These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16605252)

  • 21. Binding of ferredoxin to ferredoxin:NADP+ oxidoreductase: the role of carboxyl groups, electrostatic surface potential, and molecular dipole moment.
    De Pascalis AR; Jelesarov I; Ackermann F; Koppenol WH; Hirasawa M; Knaff DB; Bosshard HR
    Protein Sci; 1993 Jul; 2(7):1126-35. PubMed ID: 8102922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resonance Raman evidence for an Fe-O-Fe center in stearoyl-ACP desaturase. Primary sequence identity with other diiron-oxo proteins.
    Fox BG; Shanklin J; Ai J; Loehr TM; Sanders-Loehr J
    Biochemistry; 1994 Nov; 33(43):12776-86. PubMed ID: 7947683
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and kinetic studies of the pyruvate-ferredoxin oxidoreductase/ferredoxin complex from Desulfovibrio africanus.
    Pieulle L; Charon MH; Bianco P; Bonicel J; Pétillot Y; Hatchikian EC
    Eur J Biochem; 1999 Sep; 264(2):500-8. PubMed ID: 10491097
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An approach based on quantum chemistry calculations and structural analysis of a [2Fe-2S] ferredoxin that reveal a redox-linked switch in the electron-transfer process to the Fd-NADP+ reductase.
    Morales R; Frey M; Mouesca JM
    J Am Chem Soc; 2002 Jun; 124(23):6714-22. PubMed ID: 12047191
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An electrochemical, kinetic, and spectroscopic characterization of [2Fe-2S] vegetative and heterocyst ferredoxins from Anabaena 7120 with mutations in the cluster binding loop.
    Weber-Main AM; Hurley JK; Cheng H; Xia B; Chae YK; Markley JL; Martinez-Júlvez M; Gomez-Moreno C; Stankovich MT; Tollin G
    Arch Biochem Biophys; 1998 Jul; 355(2):181-8. PubMed ID: 9675025
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The CrIIL reduction of [2Fe-2S] ferredoxins and site of attachment of CrIII using 1H NMR and site-directed mutagenesis.
    Im SC; Worrall JA; Liu G; Aliverti A; Zanetti G; Luchinat C; Bertini I; Sykes AG
    Inorg Chem; 2000 Apr; 39(8):1755-64. PubMed ID: 12526565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Revealing the catalytic potential of an acyl-ACP desaturase: tandem selective oxidation of saturated fatty acids.
    Whittle EJ; Tremblay AE; Buist PH; Shanklin J
    Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14738-43. PubMed ID: 18796606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox and functional analysis of the Rieske ferredoxin component of the toluene 4-monooxygenase.
    Elsen NL; Moe LA; McMartin LA; Fox BG
    Biochemistry; 2007 Jan; 46(4):976-86. PubMed ID: 17240981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Iron-sulfur cluster cysteine-to-serine mutants of Anabaena -2Fe-2S- ferredoxin exhibit unexpected redox properties and are competent in electron transfer to ferredoxin:NADP+ reductase.
    Hurley JK; Weber-Main AM; Hodges AE; Stankovich MT; Benning MM; Holden HM; Cheng H; Xia B; Markley JL; Genzor C; Gomez-Moreno C; Hafezi R; Tollin G
    Biochemistry; 1997 Dec; 36(49):15109-17. PubMed ID: 9398238
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A hyperthermophilic plant-type [2Fe-2S] ferredoxin from Aquifex aeolicus is stabilized by a disulfide bond.
    Meyer J; Clay MD; Johnson MK; Stubna A; Münck E; Higgins C; Wittung-Stafshede P
    Biochemistry; 2002 Mar; 41(9):3096-108. PubMed ID: 11863449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Iron-sulfur cluster biosynthesis. Kinetic analysis of [2Fe-2S] cluster transfer from holo ISU to apo Fd: role of redox chemistry and a conserved aspartate.
    Wu SP; Wu G; Surerus KK; Cowan JA
    Biochemistry; 2002 Jul; 41(28):8876-85. PubMed ID: 12102630
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extensive ligand rearrangements around the [2Fe-2S] cluster of Clostridium pasteurianum ferredoxin.
    Golinelli MP; Chatelet C; Duin EC; Johnson MK; Meyer J
    Biochemistry; 1998 Jul; 37(29):10429-37. PubMed ID: 9671512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new structural insight into differential interaction of cyanobacterial and plant ferredoxins with nitrite reductase as revealed by NMR and X-ray crystallographic studies.
    Sakakibara Y; Kimura H; Iwamura A; Saitoh T; Ikegami T; Kurisu G; Hase T
    J Biochem; 2012 May; 151(5):483-92. PubMed ID: 22427434
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The PsaC subunit of photosystem I provides an essential lysine residue for fast electron transfer to ferredoxin.
    Fischer N; Hippler M; Sétif P; Jacquot JP; Rochaix JD
    EMBO J; 1998 Feb; 17(4):849-58. PubMed ID: 9463363
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A structural basis of Equisetum arvense ferredoxin isoform II producing an alternative electron transfer with ferredoxin-NADP+ reductase.
    Kurisu G; Nishiyama D; Kusunoki M; Fujikawa S; Katoh M; Hanke GT; Hase T; Teshima K
    J Biol Chem; 2005 Jan; 280(3):2275-81. PubMed ID: 15513928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutations of Glu92 in ferredoxin I from spinach leaves produce proteins fully functional in electron transfer but less efficient in supporting NADP+ photoreduction.
    Piubelli L; Aliverti A; Bellintani F; Zanetti G
    Eur J Biochem; 1996 Mar; 236(2):465-9. PubMed ID: 8612617
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutational, kinetic, and NMR studies of the roles of conserved glutamate residues and of lysine-39 in the mechanism of the MutT pyrophosphohydrolase.
    Harris TK; Wu G; Massiah MA; Mildvan AS
    Biochemistry; 2000 Feb; 39(7):1655-74. PubMed ID: 10677214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrostatic effects in electron transfer reactions of [2Fe-2S] ferredoxins with inorganic reagents.
    Vidakovic M; Germanas JP
    Protein Sci; 1996 Sep; 5(9):1793-9. PubMed ID: 8880903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox chemistry of the Schizosaccharomyces pombe ferredoxin electron-transfer domain and influence of Cys to Ser substitutions.
    Wu SP; Bellei M; Mansy SS; Battistuzzi G; Sola M; Cowan JA
    J Inorg Biochem; 2011 Jun; 105(6):806-11. PubMed ID: 21497579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Higher order structure contributes to specific differences in redox potential and electron transfer efficiency of root and leaf ferredoxins.
    Gou P; Hanke GT; Kimata-Ariga Y; Standley DM; Kubo A; Taniguchi I; Nakamura H; Hase T
    Biochemistry; 2006 Dec; 45(48):14389-96. PubMed ID: 17128978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.