These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 16605412)
1. Fluctuation theorem for constrained equilibrium systems. Gilbert T; Dorfman JR Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026121. PubMed ID: 16605412 [TBL] [Abstract][Full Text] [Related]
2. Application of the Gallavotti-Cohen fluctuation relation to thermostated steady states near equilibrium. Evans DJ; Searles DJ; Rondoni L Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056120. PubMed ID: 16089615 [TBL] [Abstract][Full Text] [Related]
3. Fluctuation formula in the Nosé-Hoover thermostated Lorentz gas. Dolowschiák M; Kovács Z Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):025202. PubMed ID: 15783368 [TBL] [Abstract][Full Text] [Related]
4. Large fluctuations of the macroscopic current in diffusive systems: a numerical test of the additivity principle. Hurtado PI; Garrido PL Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041102. PubMed ID: 20481672 [TBL] [Abstract][Full Text] [Related]
6. A proof of Jarzynski's nonequilibrium work theorem for dynamical systems that conserve the canonical distribution. Schöll-Paschinger E; Dellago C J Chem Phys; 2006 Aug; 125(5):054105. PubMed ID: 16942201 [TBL] [Abstract][Full Text] [Related]
7. Equilibrium and stationary nonequilibrium states in a chain of colliding harmonic oscillators. Sano MM Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Feb; 61(2):1144-51. PubMed ID: 11046386 [TBL] [Abstract][Full Text] [Related]
8. Fluctuation theorem applied to the Nosé-Hoover thermostated Lorentz gas. Gilbert T Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):035102. PubMed ID: 16605584 [TBL] [Abstract][Full Text] [Related]
9. Anomalies and absence of local equilibrium, and universality, in one-dimensional particles systems. Giberti C; Rondoni L Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041115. PubMed ID: 21599123 [TBL] [Abstract][Full Text] [Related]
10. (Global and local) fluctuations of phase space contraction in deterministic stationary nonequilibrium. Bonetto F; Chernov NI; Lebowitz JL Chaos; 1998 Dec; 8(4):823-833. PubMed ID: 12779790 [TBL] [Abstract][Full Text] [Related]
11. Generalization of Nose and Nose-hoover isothermal dynamics. Branka AC; Wojciechowski KW Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Sep; 62(3 Pt A):3281-92. PubMed ID: 11088826 [TBL] [Abstract][Full Text] [Related]
12. Independence of the transient fluctuation theorem to thermostatting details. Williams SR; Searles DJ; Evans DJ Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066113. PubMed ID: 15697440 [TBL] [Abstract][Full Text] [Related]
13. Nose-Hoover chain method for nonequilibrium molecular dynamics simulation. Branka AC Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 May; 61(5A):4769-73. PubMed ID: 11031517 [TBL] [Abstract][Full Text] [Related]
14. Fluctuation properties of steady-state Langevin systems. Weiss JB Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061128. PubMed ID: 18233835 [TBL] [Abstract][Full Text] [Related]
15. Fluctuation theorem for partially masked nonequilibrium dynamics. Shiraishi N; Sagawa T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012130. PubMed ID: 25679593 [TBL] [Abstract][Full Text] [Related]
16. An ergodic configurational thermostat using selective control of higher order temperatures. Patra PK; Bhattacharya B J Chem Phys; 2015 May; 142(19):194103. PubMed ID: 26001443 [TBL] [Abstract][Full Text] [Related]
17. Nonequilibrium fluctuation-dissipation relations of interacting Brownian particles driven by shear. Krüger M; Fuchs M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011408. PubMed ID: 20365374 [TBL] [Abstract][Full Text] [Related]
18. Typical and rare fluctuations in nonlinear driven diffusive systems with dissipation. Hurtado PI; Lasanta A; Prados A Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022110. PubMed ID: 24032778 [TBL] [Abstract][Full Text] [Related]
19. Fluctuation dissipation relations in stationary states of interacting Brownian particles under shear. Krüger M; Fuchs M Phys Rev Lett; 2009 Apr; 102(13):135701. PubMed ID: 19392369 [TBL] [Abstract][Full Text] [Related]
20. Test of the additivity principle for current fluctuations in a model of heat conduction. Hurtado PI; Garrido PL Phys Rev Lett; 2009 Jun; 102(25):250601. PubMed ID: 19659064 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]