These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 16605510)
1. Calculations of accommodation coefficients for diatomic molecular gases. Ambaye H; Manson JR Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031202. PubMed ID: 16605510 [TBL] [Abstract][Full Text] [Related]
2. Translational to rotational energy transfer in molecule-surface collisions. Ambaye H; Manson JR J Chem Phys; 2006 Aug; 125(8):084717. PubMed ID: 16965049 [TBL] [Abstract][Full Text] [Related]
3. Molecular-dynamics study on characteristics of energy and tangential momentum accommodation coefficients. Yamaguchi H; Matsuda Y; Niimi T Phys Rev E; 2017 Jul; 96(1-1):013116. PubMed ID: 29347117 [TBL] [Abstract][Full Text] [Related]
4. Theory of molecule-surface scattering at thermal and hyperthermal energies. Iftimia I; Manson JR Phys Rev Lett; 2001 Aug; 87(9):093201. PubMed ID: 11531564 [TBL] [Abstract][Full Text] [Related]
5. Gas-surface interactions using accommodation coefficients for a dilute and a dense gas in a micro- or nanochannel: heat flux predictions using combined molecular dynamics and Monte Carlo techniques. Nedea SV; van Steenhoven AA; Markvoort AJ; Spijker P; Giordano D Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053012. PubMed ID: 25353885 [TBL] [Abstract][Full Text] [Related]
6. Collision cross section calculations for polyatomic ions considering rotating diatomic/linear gas molecules. Larriba-Andaluz C; Hogan CJ J Chem Phys; 2014 Nov; 141(19):194107. PubMed ID: 25416874 [TBL] [Abstract][Full Text] [Related]
7. Scattering of CO and N2 molecules by a graphite surface. Oh J; Kondo T; Arakawa K; Saito Y; Nakamura J; Hayes WW; Manson JR J Phys Condens Matter; 2012 Sep; 24(35):354001. PubMed ID: 22898810 [TBL] [Abstract][Full Text] [Related]
8. Modeling reactive scattering of F(2P) at a liquid squalane interface: a hybrid QM/MM molecular dynamics study. Radak BK; Yockel S; Kim D; Schatz GC J Phys Chem A; 2009 Jul; 113(26):7218-26. PubMed ID: 19323516 [TBL] [Abstract][Full Text] [Related]
9. Scattering of O2 from AL111. Ambaye H; Manson JR; Weisse O; Wesenberg C; Binetti M; Hasselbrink E J Chem Phys; 2004 Jul; 121(4):1901-9. PubMed ID: 15260742 [TBL] [Abstract][Full Text] [Related]
10. A study of internal energy relaxation in shocks using molecular dynamics based models. Li Z; Parsons N; Levin DA J Chem Phys; 2015 Oct; 143(14):144501. PubMed ID: 26472383 [TBL] [Abstract][Full Text] [Related]
11. Theoretical unimolecular kinetics for CH4 + M ⇄ CH3 + H + M in eight baths, M = He, Ne, Ar, Kr, H2, N2, CO, and CH4. Jasper AW; Miller JA J Phys Chem A; 2011 Jun; 115(24):6438-55. PubMed ID: 21598912 [TBL] [Abstract][Full Text] [Related]
12. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators. Sartori E; Brescaccin L; Serianni G Rev Sci Instrum; 2016 Feb; 87(2):02A502. PubMed ID: 26931910 [TBL] [Abstract][Full Text] [Related]
13. The Influence of Gas-Wall and Gas-Gas Interactions on the Accommodation Coefficients for Rarefied Gases: A Molecular Dynamics Study. Mohammad Nejad S; Nedea S; Frijns A; Smeulders D Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32204426 [TBL] [Abstract][Full Text] [Related]
14. Molecular dynamics simulation of O2 sticking on Pt(111) using the ab initio based ReaxFF reactive force field. Valentini P; Schwartzentruber TE; Cozmuta I J Chem Phys; 2010 Aug; 133(8):084703. PubMed ID: 20815586 [TBL] [Abstract][Full Text] [Related]
15. Nanoparticles in dilute gases: Fundamental equivalence between momentum accommodation and surface adsorption. Liu C; Wang H Phys Rev E; 2019 Apr; 99(4-1):042127. PubMed ID: 31108667 [TBL] [Abstract][Full Text] [Related]
16. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone. Murarka RK; Liwo A; Scheraga HA J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219 [TBL] [Abstract][Full Text] [Related]
17. The importance of accurate adiabatic interaction potentials for the correct description of electronically nonadiabatic vibrational energy transfer: a combined experimental and theoretical study of NO(v = 3) collisions with a Au(111) surface. Golibrzuch K; Shirhatti PR; Rahinov I; Kandratsenka A; Auerbach DJ; Wodtke AM; Bartels C J Chem Phys; 2014 Jan; 140(4):044701. PubMed ID: 25669561 [TBL] [Abstract][Full Text] [Related]
18. Dynamically biased RRKM model of activated gas-surface reactivity: vibrational efficacy and rotation as a spectator in the dissociative chemisorption of CH4 on Pt(111). Donald SB; Harrison I Phys Chem Chem Phys; 2012 Feb; 14(5):1784-95. PubMed ID: 22193867 [TBL] [Abstract][Full Text] [Related]
19. Combined valence bond-molecular mechanics potential-energy surface and direct dynamics study of rate constants and kinetic isotope effects for the H + C2H6 reaction. Chakraborty A; Zhao Y; Lin H; Truhlar DG J Chem Phys; 2006 Jan; 124(4):044315. PubMed ID: 16460170 [TBL] [Abstract][Full Text] [Related]
20. New exchange-Coulomb N2-Ar potential-energy surface and its comparison with other recent N2-Ar potential-energy surfaces. Dham AK; Meath WJ; Jechow JW; McCourt FR J Chem Phys; 2006 Jan; 124(3):034308. PubMed ID: 16438584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]