These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 16605517)
1. Use of a void network model to correlate porosity, mercury porosimetry, thin section, absolute permeability, and NMR relaxation time data for sandstone rocks. Matthews GP; Canonville CF; Moss AK Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031307. PubMed ID: 16605517 [TBL] [Abstract][Full Text] [Related]
2. Relationship between the Size of the Samples and the Interpretation of the Mercury Intrusion Results of an Artificial Sandstone. Dong H; Zhang H; Zuo Y; Gao P; Ye G Materials (Basel); 2018 Jan; 11(2):. PubMed ID: 29382067 [TBL] [Abstract][Full Text] [Related]
3. Combining mercury thermoporometry with integrated gas sorption and mercury porosimetry to improve accuracy of pore-size distributions for disordered solids. Bafarawa B; Nepryahin A; Ji L; Holt EM; Wang J; Rigby SP J Colloid Interface Sci; 2014 Jul; 426():72-9. PubMed ID: 24863767 [TBL] [Abstract][Full Text] [Related]
4. Angstrom-to-millimeter characterization of sedimentary rock microstructure. Radlinski AP; Ioannidis MA; Hinde AL; Hainbuchner M; Baron M; Rauch H; Kline SR J Colloid Interface Sci; 2004 Jun; 274(2):607-12. PubMed ID: 15144836 [TBL] [Abstract][Full Text] [Related]
5. Analysis of historical porous building materials by the NMR-MOUSE. Sharma S; Casanova F; Wache W; Segre A; Blümich B Magn Reson Imaging; 2003; 21(3-4):249-55. PubMed ID: 12850715 [TBL] [Abstract][Full Text] [Related]
6. Laser scanning confocal microscopy characterization of water repellent distribution in a sandstone pore network. Zoghlami K; Gómez-Gras D; Corbella M; Darragi F Microsc Res Tech; 2008 Nov; 71(11):816-21. PubMed ID: 18767050 [TBL] [Abstract][Full Text] [Related]
7. Influence of anisotropy on the dynamic wetting and permeation of paper coatings. Bodurtha PA; Matthews GP; Kettle JP; Roy IM J Colloid Interface Sci; 2005 Mar; 283(1):171-89. PubMed ID: 15694438 [TBL] [Abstract][Full Text] [Related]
8. Applicability of Nuclear Magnetic Resonance Experiment in Analyzing Pore and Fluid Distribution Characteristics of Tight Sandstone: A Case Study in the Julu Area, Bohai Bay Basin, China. Jiang Z; Zhu Y; Li P; Wang Y; Xiang J ACS Omega; 2023 Nov; 8(46):43903-43919. PubMed ID: 38027315 [TBL] [Abstract][Full Text] [Related]
9. Reconstruction of three-dimensional porous media using a single thin section. Tahmasebi P; Sahimi M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066709. PubMed ID: 23005245 [TBL] [Abstract][Full Text] [Related]
10. Study of Fractal and Multifractal Features of Pore Structure in Tight Sandstone Reservoirs of the Permian Lucaogou Formation, Jimsar Sag, Junggar Basin, Northwest China. Han C; Li G; Dan S; Yang Y; He X; Qi M; Liu G ACS Omega; 2022 Sep; 7(35):31352-31366. PubMed ID: 36092574 [TBL] [Abstract][Full Text] [Related]
11. Determination of the distribution of consolidants and interpretation of mercury porosimetry data in a sandstone porous network using LSCM. Zoghlami K; Gómez-Gras D Microsc Res Tech; 2004 Dec; 65(6):270-5. PubMed ID: 15662619 [TBL] [Abstract][Full Text] [Related]
12. Combined proton T1N and CPMG T2N studies of water saturated sandstone core plugs. Jerosch-Herold M; Thomann H; Thompson AH Magn Reson Imaging; 1994; 12(2):369-73. PubMed ID: 8170341 [TBL] [Abstract][Full Text] [Related]
13. Magnetization evolution in network models of porous rock under conditions of drainage and imbibition. Chang D; Ioannidis MA J Colloid Interface Sci; 2002 Sep; 253(1):159-70. PubMed ID: 16290842 [TBL] [Abstract][Full Text] [Related]
14. Modelling of the void space of tablets compacted over a range of pressures. Ridgway CJ; Ridgway K; Matthews GP J Pharm Pharmacol; 1997 Apr; 49(4):377-83. PubMed ID: 9232534 [TBL] [Abstract][Full Text] [Related]
15. Validity of NMR pore-size analysis of cultural heritage ancient building materials containing magnetic impurities. Brai M; Casieri C; De Luca F; Fantazzini P; Gombia M; Terenzi C Solid State Nucl Magn Reson; 2007 Dec; 32(4):129-35. PubMed ID: 18023331 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional diffusion of non-sorbing species in porous sandstone: computer simulation based on X-ray microtomography using synchrotron radiation. Nakashima Y; Nakano T; Nakamura K; Uesugi K; Tsuchiyama A; Ikeda S J Contam Hydrol; 2004 Oct; 74(1-4):253-64. PubMed ID: 15358495 [TBL] [Abstract][Full Text] [Related]
17. Versatile and efficient pore network extraction method using marker-based watershed segmentation. Gostick JT Phys Rev E; 2017 Aug; 96(2-1):023307. PubMed ID: 28950550 [TBL] [Abstract][Full Text] [Related]
18. On the characterization of porosity in PTFE-carbon composite implant materials by mercury porosimetry. Dehl RE J Biomed Mater Res; 1982 Sep; 16(5):715-9. PubMed ID: 7130222 [TBL] [Abstract][Full Text] [Related]
19. [Use of mercury porosimetry, assisted by nitrogen adsorption in the investigation of the pore structure of tablets]. Szepes A; Kovács J; Szabóné Revész P Acta Pharm Hung; 2006; 76(3):119-25. PubMed ID: 17094658 [TBL] [Abstract][Full Text] [Related]
20. Studies of fluid transport in porous rocks by echo-planar MRI. Mansfield P; Issa B Magn Reson Imaging; 1994; 12(2):275-8. PubMed ID: 8170318 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]