These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 16605530)

  • 1. Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model.
    De Menech M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031505. PubMed ID: 16605530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device.
    Li Y; Jain M; Ma Y; Nandakumar K
    Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels.
    Cheng WL; Sadr R; Dai J; Han A
    Biomed Microdevices; 2018 Aug; 20(3):72. PubMed ID: 30105562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions.
    Christopher GF; Noharuddin NN; Taylor JA; Anna SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036317. PubMed ID: 18851153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Migration of a droplet in a cylindrical tube in the creeping flow regime.
    Nath B; Biswas G; Dalal A; Sahu KC
    Phys Rev E; 2017 Mar; 95(3-1):033110. PubMed ID: 28415194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations.
    Liu H; Valocchi AJ; Kang Q
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046309. PubMed ID: 22680576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference.
    Liu H; Ju Y; Wang N; Xi G; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033306. PubMed ID: 26465585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformation and breakup of high-viscosity droplets with symmetric microfluidic cross flows.
    Cubaud T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026307. PubMed ID: 19792249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal Correlation for Droplet Fragmentation in a Microfluidic T-Junction.
    Mandal J; Sarkar S
    Langmuir; 2024 Aug; 40(33):17489-17499. PubMed ID: 39103238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities.
    Jakiela S; Makulska S; Korczyk PM; Garstecki P
    Lab Chip; 2011 Nov; 11(21):3603-8. PubMed ID: 21909516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice Boltzmann simulations of droplet formation in confined channels with thermocapillary flows.
    Gupta A; Sbragaglia M; Belardinelli D; Sugiyama K
    Phys Rev E; 2016 Dec; 94(6-1):063302. PubMed ID: 28085339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Droplet size distributions in turbulent emulsions: breakup criteria and surfactant effects from direct numerical simulations.
    Skartlien R; Sollum E; Schumann H
    J Chem Phys; 2013 Nov; 139(17):174901. PubMed ID: 24206328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling.
    Glawdel T; Elbuken C; Ren CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016323. PubMed ID: 22400673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coexistence of different droplet generating instabilities: new breakup regimes of a liquid filament.
    Hein M; Fleury JB; Seemann R
    Soft Matter; 2015 Jul; 11(26):5246-52. PubMed ID: 26053325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plethora of transitions during breakup of liquid filaments.
    Castrejón-Pita JR; Castrejón-Pita AA; Thete SS; Sambath K; Hutchings IM; Hinch J; Lister JR; Basaran OA
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4582-7. PubMed ID: 25825761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformation and breakup of viscoelastic droplets in confined shear flow.
    Gupta A; Sbragaglia M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023305. PubMed ID: 25215849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic Valves for Selective on-Chip Droplet Splitting at Multiple Sites.
    Agnihotri SN; Raveshi MR; Bhardwaj R; Neild A
    Langmuir; 2020 Feb; 36(5):1138-1146. PubMed ID: 31968938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations.
    Glawdel T; Elbuken C; Ren CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016322. PubMed ID: 22400672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.