These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 16605530)

  • 21. Experimental studies on droplet characteristics in a microfluidic flow focusing droplet generator: effect of continuous phase on droplet encapsulation.
    Srikanth S; Raut S; Dubey SK; Ishii I; Javed A; Goel S
    Eur Phys J E Soft Matter; 2021 Aug; 44(8):108. PubMed ID: 34455490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices.
    Okushima S; Nisisako T; Torii T; Higuchi T
    Langmuir; 2004 Nov; 20(23):9905-8. PubMed ID: 15518471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic Generation of High-Viscosity Droplets by Surface-Controlled Breakup of Segment Flow.
    Chen H; Man J; Li Z; Li J
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21059-21064. PubMed ID: 28589716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High inertial microfluidics for droplet generation in a flow-focusing geometry.
    Mastiani M; Seo S; Riou B; Kim M
    Biomed Microdevices; 2019 Jun; 21(3):50. PubMed ID: 31203430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of Growth and Breakup of Viscous Pendant Drops into Air.
    Zhang X
    J Colloid Interface Sci; 1999 Apr; 212(1):107-122. PubMed ID: 10072280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding droplet breakup in a post-array device with sheath-flow configuration.
    Masui S; Kanno Y; Nisisako T
    Lab Chip; 2023 Nov; 23(23):4959-4966. PubMed ID: 37873662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Droplet size scaling of water-in-oil emulsions under turbulent flow.
    Boxall JA; Koh CA; Sloan ED; Sum AK; Wu DT
    Langmuir; 2012 Jan; 28(1):104-10. PubMed ID: 22047095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Droplet Breakup in Expansion-contraction Microchannels.
    Zhu P; Kong T; Lei L; Tian X; Kang Z; Wang L
    Sci Rep; 2016 Feb; 6():21527. PubMed ID: 26899018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets.
    Yobas L; Martens S; Ong WL; Ranganathan N
    Lab Chip; 2006 Aug; 6(8):1073-9. PubMed ID: 16874381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capillary film and breakup mechanism in the squeezing to dripping transition regime at the mesoscale between micro and milli-fluidics.
    Freytes VM; Rosen M; D'Onofrio A
    Chaos; 2018 Oct; 28(10):103104. PubMed ID: 30384645
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Droplet breakup in microfluidic junctions of arbitrary angles.
    Ménétrier-Deremble L; Tabeling P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):035303. PubMed ID: 17025697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals.
    Porter D; Savage JR; Cohen I; Spicer P; Caggioni M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041701. PubMed ID: 22680486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of the Surface Viscosity on the Breakup of a Surfactant-Laden Drop.
    Ponce-Torres A; Montanero JM; Herrada MA; Vega EJ; Vega JM
    Phys Rev Lett; 2017 Jan; 118(2):024501. PubMed ID: 28128625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a simple droplet-based microfluidic capillary viscometer for low-viscosity Newtonian fluids.
    DeLaMarre MF; Keyzer A; Shippy SA
    Anal Chem; 2015 May; 87(9):4649-57. PubMed ID: 25825941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Obstructed breakup of slender drops in a microfluidic T junction.
    Leshansky AM; Afkhami S; Jullien MC; Tabeling P
    Phys Rev Lett; 2012 Jun; 108(26):264502. PubMed ID: 23004987
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrodynamic resistance of single confined moving drops in rectangular microchannels.
    Vanapalli SA; Banpurkar AG; van den Ende D; Duits MH; Mugele F
    Lab Chip; 2009 Apr; 9(7):982-90. PubMed ID: 19294311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling breakup and relaxation of Newtonian droplets using the advected phase-field approach.
    Beaucourt J; Biben T; Leyrat A; Verdier C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021405. PubMed ID: 17358340
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Localized electric field induced transition and miniaturization of two-phase flow patterns inside microchannels.
    Sharma A; Tiwari V; Kumar V; Mandal TK; Bandyopadhyay D
    Electrophoresis; 2014 Oct; 35(20):2930-7. PubMed ID: 25044128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of confinement on droplet breakup in sheared emulsions.
    Vananroye A; Van Puyvelde P; Moldenaers P
    Langmuir; 2006 Apr; 22(9):3972-4. PubMed ID: 16618134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem.
    Ren Y; Liu Z; Shum HC
    Lab Chip; 2015 Jan; 15(1):121-34. PubMed ID: 25316203
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.