These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 16605607)
1. Nonequilibrium phase transitions and finite-size scaling in weighted scale-free networks. Karsai M; Juhász R; Iglói F Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036116. PubMed ID: 16605607 [TBL] [Abstract][Full Text] [Related]
2. Irreversible opinion spreading on scale-free networks. Candia J Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026110. PubMed ID: 17358397 [TBL] [Abstract][Full Text] [Related]
3. Number of loops of size h in growing scale-free networks. Bianconi G; Capocci A Phys Rev Lett; 2003 Feb; 90(7):078701. PubMed ID: 12633275 [TBL] [Abstract][Full Text] [Related]
4. Dynamical scaling behavior of the one-dimensional conserved directed-percolation universality class. Kwon S; Kim Y Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051119. PubMed ID: 23004715 [TBL] [Abstract][Full Text] [Related]
5. Nonequilibrium phase transitions and tricriticality in a three-dimensional lattice system with random-field competing kinetics. Crokidakis N Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041138. PubMed ID: 20481708 [TBL] [Abstract][Full Text] [Related]
6. Structural properties of the synchronized cluster on complex networks. Kim Y; Ko Y; Yook SH Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011139. PubMed ID: 20365355 [TBL] [Abstract][Full Text] [Related]
7. Opinion Dynamics Systems on Barabási-Albert Networks: Biswas-Chatterjee-Sen Model. Alencar DSM; Alves TFA; Alves GA; Macedo-Filho A; Ferreira RS; Lima FWS; Plascak JA Entropy (Basel); 2023 Jan; 25(2):. PubMed ID: 36832551 [TBL] [Abstract][Full Text] [Related]
9. Finite-size scaling of directed percolation in the steady state. Janssen HK; Lübeck S; Stenull O Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041126. PubMed ID: 17994955 [TBL] [Abstract][Full Text] [Related]
10. Quantum phase transition of the transverse-field quantum Ising model on scale-free networks. Yi H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012146. PubMed ID: 25679609 [TBL] [Abstract][Full Text] [Related]
11. Phase transitions with infinitely many absorbing states in complex networks. Sander RS; Ferreira SC; Pastor-Satorras R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022820. PubMed ID: 23496581 [TBL] [Abstract][Full Text] [Related]
12. Structural transitions in scale-free networks. Szabó G; Alava M; Kertész J Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056102. PubMed ID: 12786215 [TBL] [Abstract][Full Text] [Related]
13. Epidemic dynamics in finite size scale-free networks. Pastor-Satorras R; Vespignani A Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):035108. PubMed ID: 11909143 [TBL] [Abstract][Full Text] [Related]
14. Absorbing-state phase transitions on percolating lattices. Lee MY; Vojta T Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041112. PubMed ID: 19518178 [TBL] [Abstract][Full Text] [Related]
15. A modified Ising model of Barabási-Albert network with gene-type spins. Krishnan J; Torabi R; Schuppert A; Napoli ED J Math Biol; 2020 Sep; 81(3):769-798. PubMed ID: 32897406 [TBL] [Abstract][Full Text] [Related]
16. Rare regions of the susceptible-infected-susceptible model on Barabási-Albert networks. Ódor G Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042132. PubMed ID: 23679396 [TBL] [Abstract][Full Text] [Related]
17. Non-mean-field behavior of the contact process on scale-free networks. Castellano C; Pastor-Satorras R Phys Rev Lett; 2006 Jan; 96(3):038701. PubMed ID: 16486782 [TBL] [Abstract][Full Text] [Related]
18. Critical behavior and Griffiths effects in the disordered contact process. Vojta T; Dickison M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036126. PubMed ID: 16241534 [TBL] [Abstract][Full Text] [Related]
19. Coarse-grained Monte Carlo simulations of the phase transition of the Potts model on weighted networks. Shen C; Chen H; Hou Z; Xin H Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066109. PubMed ID: 21797443 [TBL] [Abstract][Full Text] [Related]
20. Reweighting for nonequilibrium Markov processes using sequential importance sampling methods. Lee HK; Okabe Y Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):015102. PubMed ID: 15697640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]