These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 16605607)

  • 21. Critical behavior of the Ising model in annealed scale-free networks.
    Lee SH; Ha M; Jeong H; Noh JD; Park H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051127. PubMed ID: 20364967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finite-size scaling of synchronized oscillation on complex networks.
    Hong H; Park H; Tang LH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066104. PubMed ID: 18233895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Infinite-randomness critical point in the two-dimensional disordered contact process.
    Vojta T; Farquhar A; Mast J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011111. PubMed ID: 19257005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Damage spreading and criticality in finite random dynamical networks.
    Rohlf T; Gulbahce N; Teuscher C
    Phys Rev Lett; 2007 Dec; 99(24):248701. PubMed ID: 18233497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Critical phenomena on scale-free networks: logarithmic corrections and scaling functions.
    Palchykov V; von Ferber C; Folk R; Holovatch Y; Kenna R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011145. PubMed ID: 20866603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Langevin approach for the dynamics of the contact process on annealed scale-free networks.
    Boguñá M; Castellano C; Pastor-Satorras R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036110. PubMed ID: 19392021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Critical behavior of the contact process in a multiscale network.
    Ferreira SC; Martins ML
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):036112. PubMed ID: 17930311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Majority-vote model with degree-weighted influence on complex networks.
    Kim M; Yook SH
    Phys Rev E; 2021 Feb; 103(2-1):022302. PubMed ID: 33735960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectral analysis and slow spreading dynamics on complex networks.
    Odor G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032109. PubMed ID: 24125216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finite-time and finite-size scaling of the Kuramoto oscillators.
    Lee MJ; Yi SD; Kim BJ
    Phys Rev Lett; 2014 Feb; 112(7):074102. PubMed ID: 24579603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Universal scaling of distances in complex networks.
    Hołyst JA; Sienkiewicz J; Fronczak A; Fronczak P; Suchecki K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026108. PubMed ID: 16196645
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonequilibrium transitions in complex networks: a model of social interaction.
    Klemm K; Eguíluz VM; Toral R; San Miguel M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026120. PubMed ID: 12636761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states.
    de Oliveira MM; da Luz MG; Fiore CE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062126. PubMed ID: 26764651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Universal finite-size scaling behavior and universal dynamical scaling behavior of absorbing phase transitions with a conserved field.
    Lübeck S; Heger PC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056102. PubMed ID: 14682841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diffusion-annihilation processes in complex networks.
    Catanzaro M; Boguñá M; Pastor-Satorras R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056104. PubMed ID: 16089599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field.
    Korniss G; White CJ; Rikvold PA; Novotny MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of degree-biased transmission rate and nonlinear infectivity on rumor spreading in complex social networks.
    Roshani F; Naimi Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036109. PubMed ID: 22587151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Random initial condition in small Barabasi-Albert networks and deviations from the scale-free behavior.
    Guimarães PR; de Aguiar MA; Bascompte J; Jordano P; dos Reis SF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):037101. PubMed ID: 15903635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correlations in scale-free networks: tomography and percolation.
    Xulvi-Brunet R; Pietsch W; Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036119. PubMed ID: 14524844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mean-field theory for clustering coefficients in Barabási-Albert networks.
    Fronczak A; Fronczak P; Hołyst JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046126. PubMed ID: 14683021
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.