These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16605613)

  • 1. Quantum-classical transition of photon-Carnot engine induced by quantum decoherence.
    Quan HT; Zhang P; Sun CP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036122. PubMed ID: 16605613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum fuel with multilevel atomic coherence for ultrahigh specific work in a photonic Carnot engine.
    Türkpençe D; Müstecaplıoğlu ÖE
    Phys Rev E; 2016 Jan; 93(1):012145. PubMed ID: 26871061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid microwave-cavity heat engine.
    Bergenfeldt C; Samuelsson P; Sothmann B; Flindt C; Büttiker M
    Phys Rev Lett; 2014 Feb; 112(7):076803. PubMed ID: 24579624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling photons in a box and exploring the quantum to classical boundary (Nobel Lecture).
    Haroche S
    Angew Chem Int Ed Engl; 2013 Sep; 52(39):10159-78. PubMed ID: 24038846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photon-assisted entanglement and squeezing generation and decoherence suppression via a quadratic optomechanical coupling.
    Zhang Z; Wang X
    Opt Express; 2020 Feb; 28(3):2732-2743. PubMed ID: 32121955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing Phonon-Induced Decoherence in Solid-State Single-Photon Sources with Cavity Quantum Electrodynamics.
    Grange T; Somaschi N; Antón C; De Santis L; Coppola G; Giesz V; Lemaître A; Sagnes I; Auffèves A; Senellart P
    Phys Rev Lett; 2017 Jun; 118(25):253602. PubMed ID: 28696749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.
    Xu YY; Chen B; Liu J
    Phys Rev E; 2018 Feb; 97(2-1):022130. PubMed ID: 29548214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum information in cavity quantum electrodynamics: logical gates, entanglement engineering and 'Schrödinger-cat states'.
    Haroche S
    Philos Trans A Math Phys Eng Sci; 2003 Jul; 361(1808):1339-47. PubMed ID: 12869311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mean-field dynamics with stochastic decoherence (MF-SD): a new algorithm for nonadiabatic mixed quantum/classical molecular-dynamics simulations with nuclear-induced decoherence.
    Bedard-Hearn MJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2005 Dec; 123(23):234106. PubMed ID: 16392913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photon statistics on the extreme entanglement.
    Zhang Y; Zhang J; Yu CS
    Sci Rep; 2016 Apr; 6():24098. PubMed ID: 27053368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust entanglement and steering in open Dicke models with individual atomic spontaneous emission and dephasing.
    Zhou S; Deng W; Tan H
    Opt Express; 2023 Feb; 31(5):8548-8560. PubMed ID: 36859967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoscopic systems: classical irreversibility and quantum coherence.
    Barbara B
    Philos Trans A Math Phys Eng Sci; 2012 Sep; 370(1975):4487-516. PubMed ID: 22908339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.
    Yoshie T; Scherer A; Hendrickson J; Khitrova G; Gibbs HM; Rupper G; Ell C; Shchekin OB; Deppe DG
    Nature; 2004 Nov; 432(7014):200-3. PubMed ID: 15538363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extracting work from a single heat bath via vanishing quantum coherence.
    Scully MO; Zubairy MS; Agarwal GS; Walther H
    Science; 2003 Feb; 299(5608):862-4. PubMed ID: 12511655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance analysis of a two-state quantum heat engine working with a single-mode radiation field in a cavity.
    Wang J; He J; He X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041127. PubMed ID: 22181107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency at maximum power of a heat engine working with a two-level atomic system.
    Wang R; Wang J; He J; Ma Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042119. PubMed ID: 23679385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum thermodynamic cycles and quantum heat engines.
    Quan HT; Liu YX; Sun CP; Nori F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031105. PubMed ID: 17930197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superradiant Quantum Heat Engine.
    Hardal AÜ; Müstecaplıoğlu ÖE
    Sci Rep; 2015 Aug; 5():12953. PubMed ID: 26260797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental implementation of fully controlled dephasing dynamics and synthetic spectral densities.
    Liu ZD; Lyyra H; Sun YN; Liu BH; Li CF; Guo GC; Maniscalco S; Piilo J
    Nat Commun; 2018 Aug; 9(1):3453. PubMed ID: 30150668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.