These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16605647)

  • 1. Stretching and tilting of material lines in turbulence: the effect of strain and vorticity.
    Guala M; Liberzon A; Lüthi B; Kinzelbach W; Tsinober A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036303. PubMed ID: 16605647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-deviation statistics of vorticity stretching in isotropic turbulence.
    Johnson PL; Meneveau C
    Phys Rev E; 2016 Mar; 93(3):033118. PubMed ID: 27078458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local and nonlocal strain rate fields and vorticity alignment in turbulent flows.
    Hamlington PE; Schumacher J; Dahm WJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026303. PubMed ID: 18352118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows.
    Ohkitani K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046304. PubMed ID: 12006010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of compressibility on the Lagrangian statistics of vorticity-strain-rate interactions.
    Danish M; Sinha SS; Srinivasan B
    Phys Rev E; 2016 Jul; 94(1-1):013101. PubMed ID: 27575211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lagrangian dynamics and statistical geometric structure of turbulence.
    Chevillard L; Meneveau C
    Phys Rev Lett; 2006 Oct; 97(17):174501. PubMed ID: 17155476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental study on flow and turbulence characteristics of jet impinging on cylinder using three-dimensional Lagrangian particle tracking velocimetry.
    Kim M; Schanz D; Novara M; Godbersen P; Yeom E; Schröder A
    Sci Rep; 2023 Jul; 13(1):10929. PubMed ID: 37414852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breakup of Finite-Size Colloidal Aggregates in Turbulent Flow Investigated by Three-Dimensional (3D) Particle Tracking Velocimetry.
    Saha D; Babler MU; Holzner M; Soos M; Lüthi B; Liberzon A; Kinzelbach W
    Langmuir; 2016 Jan; 32(1):55-65. PubMed ID: 26646289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of Lagrangian velocity in fully developed turbulence.
    Mordant N; Metz P; Michel O; Pinton JF
    Phys Rev Lett; 2001 Nov; 87(21):214501. PubMed ID: 11736341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of particle dispersion by sweeping effects in synthetic turbulence.
    Eyink GL; Benveniste D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023011. PubMed ID: 23496614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable density turbulence tunnel facility.
    Bodenschatz E; Bewley GP; Nobach H; Sinhuber M; Xu H
    Rev Sci Instrum; 2014 Sep; 85(9):093908. PubMed ID: 25273740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vitro investigation of the influence of stenosis severity on the flow in the ascending aorta.
    Gülan U; Lüthi B; Holzner M; Liberzon A; Tsinober A; Kinzelbach W
    Med Eng Phys; 2014 Sep; 36(9):1147-55. PubMed ID: 25066583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced vertical inhomogeneity in turbulent rotating convection.
    Kunnen RP; Clercx HJ; Geurts BJ
    Phys Rev Lett; 2008 Oct; 101(17):174501. PubMed ID: 18999750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Curvature of lagrangian trajectories in turbulence.
    Xu H; Ouellette NT; Bodenschatz E
    Phys Rev Lett; 2007 Feb; 98(5):050201. PubMed ID: 17358827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale model of gradient evolution in turbulent flows.
    Biferale L; Chevillard L; Meneveau C; Toschi F
    Phys Rev Lett; 2007 May; 98(21):214501. PubMed ID: 17677778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the Peterlin approximation on polymer dynamics in turbulent flows.
    Vincenzi D; Perlekar P; Biferale L; Toschi F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053004. PubMed ID: 26651776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Braid Entropy of Two-Dimensional Turbulence.
    Francois N; Xia H; Punzmann H; Faber B; Shats M
    Sci Rep; 2015 Dec; 5():18564. PubMed ID: 26689261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of intense dissipation in high Reynolds number turbulence.
    Buaria D; Pumir A; Bodenschatz E
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2218):20210088. PubMed ID: 35034489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration correlations and pressure structure functions in high-reynolds number turbulence.
    Xu H; Ouellette NT; Vincenzi D; Bodenschatz E
    Phys Rev Lett; 2007 Nov; 99(20):204501. PubMed ID: 18233145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How long do particles spend in vortical regions in turbulent flows?
    Bhatnagar A; Gupta A; Mitra D; Pandit R; Perlekar P
    Phys Rev E; 2016 Nov; 94(5-1):053119. PubMed ID: 27967067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.