These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Chaotically spiking attractors in suspended-mirror optical cavities. Marino F; Marin F Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):015202. PubMed ID: 21405735 [TBL] [Abstract][Full Text] [Related]
3. Radiation-pressure cooling and optomechanical instability of a micromirror. Arcizet O; Cohadon PF; Briant T; Pinard M; Heidmann A Nature; 2006 Nov; 444(7115):71-4. PubMed ID: 17080085 [TBL] [Abstract][Full Text] [Related]
4. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Thompson JD; Zwickl BM; Jayich AM; Marquardt F; Girvin SM; Harris JG Nature; 2008 Mar; 452(7183):72-5. PubMed ID: 18322530 [TBL] [Abstract][Full Text] [Related]
5. Coexisting attractors in periodically modulated logistic maps. Singh TU; Nandi A; Ramaswamy R Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066217. PubMed ID: 18643360 [TBL] [Abstract][Full Text] [Related]
6. Nonlinear atom-field dynamics in high-Q cavities: from a BEC to a thermal gas. Griesser T; Ritsch H Opt Express; 2011 Jun; 19(12):11242-55. PubMed ID: 21716354 [TBL] [Abstract][Full Text] [Related]
7. [Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry]. Pezard L; Nandrino JL Encephale; 2001; 27(3):260-8. PubMed ID: 11488256 [TBL] [Abstract][Full Text] [Related]
8. Multistability and arithmetically period-adding bifurcations in piecewise smooth dynamical systems. Do Y; Lai YC Chaos; 2008 Dec; 18(4):043107. PubMed ID: 19123617 [TBL] [Abstract][Full Text] [Related]
9. How to obtain extreme multistability in coupled dynamical systems. Hens CR; Banerjee R; Feudel U; Dana SK Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):035202. PubMed ID: 22587141 [TBL] [Abstract][Full Text] [Related]
10. Classical signature of ponderomotive squeezing in a suspended mirror resonator. Marino F; Cataliotti FS; Farsi A; de Cumis MS; Marin F Phys Rev Lett; 2010 Feb; 104(7):073601. PubMed ID: 20366880 [TBL] [Abstract][Full Text] [Related]
11. Coexisting attractors and chaotic canard explosions in a slow-fast optomechanical system. Marino F; Marin F Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052906. PubMed ID: 23767597 [TBL] [Abstract][Full Text] [Related]
12. Loss in long-storage-time optical cavities. Isogai T; Miller J; Kwee P; Barsotti L; Evans M Opt Express; 2013 Dec; 21(24):30114-25. PubMed ID: 24514560 [TBL] [Abstract][Full Text] [Related]
13. A canonical model of multistability and scale-invariance in biological systems. Freyer F; Roberts JA; Ritter P; Breakspear M PLoS Comput Biol; 2012; 8(8):e1002634. PubMed ID: 22912567 [TBL] [Abstract][Full Text] [Related]
14. High finesse opto-mechanical cavity with a movable thirty-micron-size mirror. Kleckner D; Marshall W; de Dood MJ; Dinyari KN; Pors BJ; Irvine WT; Bouwmeester D Phys Rev Lett; 2006 May; 96(17):173901. PubMed ID: 16712296 [TBL] [Abstract][Full Text] [Related]
15. Controlling the multistability of nonlinear systems with coexisting attractors. Pisarchik AN Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046203. PubMed ID: 11690121 [TBL] [Abstract][Full Text] [Related]
16. Multistability in dynamical systems induced by weak periodic perturbations. Chizhevsky VN Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036223. PubMed ID: 11580438 [TBL] [Abstract][Full Text] [Related]