These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16605866)

  • 1. Evidence of large magnetostructural effects in austenitic stainless steels.
    Vitos L; Korzhavyi PA; Johansson B
    Phys Rev Lett; 2006 Mar; 96(11):117210. PubMed ID: 16605866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creep-resistant, Al2O3-forming austenitic stainless steels.
    Yamamoto Y; Brady MP; Lu ZP; Maziasz PJ; Liu CT; Pint BA; More KL; Meyer HM; Payzant EA
    Science; 2007 Apr; 316(5823):433-6. PubMed ID: 17446398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Fe-Ni-Cr embedded atom method potential for austenitic and ferritic systems.
    Zhou XW; Foster ME; Sills RB
    J Comput Chem; 2018 Nov; 39(29):2420-2431. PubMed ID: 30379326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3563-75. PubMed ID: 23910251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stacking fault energy prediction for austenitic steels: thermodynamic modeling vs. machine learning.
    Wang X; Xiong W
    Sci Technol Adv Mater; 2020 Sep; 21(1):626-634. PubMed ID: 33061835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corrosion Performance of Fe-Cr-Ni Alloys in Artificial Saliva and Mouthwash Solution.
    Porcayo-Calderon J; Casales-Diaz M; Salinas-Bravo VM; Martinez-Gomez L
    Bioinorg Chem Appl; 2015; 2015():930802. PubMed ID: 26064083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab Initio Study of Elastic and Mechanical Properties in FeCrMn Alloys.
    Razumovskiy VI; Hahn C; Lukas M; Romaner L
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30959910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative corrosion study of "Ni-free" austenitic stainless steels in view of medical applications.
    Reclaru L; Ziegenhagen R; Eschler PY; Blatter A; Lemaître J
    Acta Biomater; 2006 Jul; 2(4):433-44. PubMed ID: 16765883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen in chromium-manganese stainless steels: a review on the evaluation of stacking fault energy by computational thermodynamics.
    Mosecker L; Saeed-Akbari A
    Sci Technol Adv Mater; 2013 Jun; 14(3):033001. PubMed ID: 27877573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastic property maps of austenitic stainless steels.
    Vitos L; Korzhavyi PA; Johansson B
    Phys Rev Lett; 2002 Apr; 88(15):155501. PubMed ID: 11955203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of nitrogen and cold working on structural and mechanical behavior of Ni-free nitrogen containing austenitic stainless steels for biomedical applications.
    Talha M; Behera CK; Sinha OP
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():196-203. PubMed ID: 25492189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Optimized Homogenization Process of Cast 7Mo Super Austenitic Stainless Steel.
    Zhang R; He J; Xu S; Zhang F; Wang X
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A machine learning aided interpretable model for rupture strength prediction in Fe-based martensitic and austenitic alloys.
    Mamun O; Wenzlick M; Hawk J; Devanathan R
    Sci Rep; 2021 Mar; 11(1):5466. PubMed ID: 33750812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetostructural phase transitions in Ni(50)Mn(25+x)Sb(25-x) Heusler alloys.
    Khan M; Dubenko I; Stadler S; Ali N
    J Phys Condens Matter; 2008 Jun; 20(23):235204. PubMed ID: 21694295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic reasoning for colossal N supersaturation in austenitic and ferritic stainless steels during low-temperature nitridation.
    Sasidhar KN; Meka SR
    Sci Rep; 2019 May; 9(1):7996. PubMed ID: 31142759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructural Constituents and Mechanical Properties of Low-Density Fe-Cr-Ni-Mn-Al-C Stainless Steels.
    Scherbring S; Chen G; Veltel B; Bartzsch G; Richter J; Vollmer M; Blankenburg M; Shyamal S; Volkova O; Niendorf T; Lienert U; Sahu P; Mola J
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Duplex stainless steels for osteosynthesis devices.
    Cigada A; Rondelli G; Vicentini B; Giacomazzi M; Roos A
    J Biomed Mater Res; 1989 Sep; 23(9):1087-95. PubMed ID: 2777835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined effect of interstitial-substitutional elements on dislocation dynamics in nitrogen-added austenitic stainless steels.
    Kawahara Y; Kobatake S; Kaneko K; Sasaki T; Ohkubo T; Takushima C; Hamada JI
    Sci Rep; 2024 Feb; 14(1):4360. PubMed ID: 38388633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composition equivalents of stainless steels understood via gamma stabilizing efficiency.
    Zhang S; Wang Q; Yang R; Dong C
    Sci Rep; 2021 Mar; 11(1):5423. PubMed ID: 33686112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys.
    Shang SL; Zacherl CL; Fang HZ; Wang Y; Du Y; Liu ZK
    J Phys Condens Matter; 2012 Dec; 24(50):505403. PubMed ID: 23172684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.