These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16605900)

  • 1. Electrodynamic trapping of spinless neutral atoms with an atom chip.
    Kishimoto T; Hachisu H; Fujiki J; Nagato K; Yasuda M; Katori H
    Phys Rev Lett; 2006 Mar; 96(12):123001. PubMed ID: 16605900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trapping of neutral rubidium with a macroscopic three-phase electric trap.
    Rieger T; Windpassinger P; Rangwala SA; Rempe G; Pinkse PW
    Phys Rev Lett; 2007 Aug; 99(6):063001. PubMed ID: 17930819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ac electric trap for ground-state molecules.
    van Veldhoven J; Bethlem HL; Meijer G
    Phys Rev Lett; 2005 Mar; 94(8):083001. PubMed ID: 15783886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trapping of Rb atoms by ac electric fields.
    Schlunk S; Marian A; Geng P; Mosk AP; Meijer G; Schöllkopf W
    Phys Rev Lett; 2007 Jun; 98(22):223002. PubMed ID: 17677839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trapping and manipulating neutral atoms with electrostatic fields.
    Krüger P; Luo X; Klein MW; Brugger K; Haase A; Wildermuth S; Groth S; Bar-Joseph I; Folman R; Schmiedmayer J
    Phys Rev Lett; 2003 Dec; 91(23):233201. PubMed ID: 14683179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic trapping of long-lived cold Rydberg atoms.
    Choi JH; Guest JR; Povilus AP; Hansis E; Raithel G
    Phys Rev Lett; 2005 Dec; 95(24):243001. PubMed ID: 16384371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demonstration of three-dimensional electrostatic trapping of state-selected Rydberg atoms.
    Hogan SD; Merkt F
    Phys Rev Lett; 2008 Feb; 100(4):043001. PubMed ID: 18352264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negative DEP traps for single cell immobilisation.
    Thomas RS; Morgan H; Green NG
    Lab Chip; 2009 Jun; 9(11):1534-40. PubMed ID: 19458859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization and trapping of weakly bound atoms in penning trap fields.
    Kuzmin SG; O'Neil TM
    Phys Rev Lett; 2004 Jun; 92(24):243401. PubMed ID: 15245082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic trapping of ammonia molecules.
    Bethlem HL; Berden G; Crompvoets FM; Jongma RT; van Roij AJ ; Meijer G
    Nature; 2000 Aug; 406(6795):491-4. PubMed ID: 10952305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional trapping of dipolar molecules in time-varying electric fields.
    Junglen T; Rieger T; Rangwala SA; Pinkse PW; Rempe G
    Phys Rev Lett; 2004 Jun; 92(22):223001. PubMed ID: 15245216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metastable helium: a new determination of the longest atomic excited-state lifetime.
    Hodgman SS; Dall RG; Byron LJ; Baldwin KG; Buckman SJ; Truscott AG
    Phys Rev Lett; 2009 Jul; 103(5):053002. PubMed ID: 19792494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of ultracold atoms to quantized flux in a superconducting ring.
    Weiss P; Knufinke M; Bernon S; Bothner D; Sárkány L; Zimmermann C; Kleiner R; Koelle D; Fortágh J; Hattermann H
    Phys Rev Lett; 2015 Mar; 114(11):113003. PubMed ID: 25839266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser trapping of 225Ra and 226Ra with repumping by room-temperature blackbody radiation.
    Guest JR; Scielzo ND; Ahmad I; Bailey K; Greene JP; Holt RJ; Lu ZT; O'Connor TP; Potterveld DH
    Phys Rev Lett; 2007 Mar; 98(9):093001. PubMed ID: 17359153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical atomic coherence at the 1-second time scale.
    Boyd MM; Zelevinsky T; Ludlow AD; Foreman SM; Blatt S; Ido T; Ye J
    Science; 2006 Dec; 314(5804):1430-3. PubMed ID: 17138896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-poissonian loading of single atoms in a microscopic dipole trap.
    Schlosser N; Reymond G; Protsenko I; Grangier P
    Nature; 2001 Jun; 411(6841):1024-7. PubMed ID: 11429597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realization of a superconducting atom chip.
    Nirrengarten T; Qarry A; Roux C; Emmert A; Nogues G; Brune M; Raimond JM; Haroche S
    Phys Rev Lett; 2006 Nov; 97(20):200405. PubMed ID: 17155668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lossless state detection of single neutral atoms.
    Bochmann J; Mücke M; Guhl C; Ritter S; Rempe G; Moehring DL
    Phys Rev Lett; 2010 May; 104(20):203601. PubMed ID: 20867026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crossed vortex bottle beam trap for single-atom qubits.
    Li G; Zhang S; Isenhower L; Maller K; Saffman M
    Opt Lett; 2012 Mar; 37(5):851-3. PubMed ID: 22378415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherence in microchip traps.
    Treutlein P; Hommelhoff P; Steinmetz T; Hänsch TW; Reichel J
    Phys Rev Lett; 2004 May; 92(20):203005. PubMed ID: 15169350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.