These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16606093)

  • 1. Optically tunable photonic stop bands in homogeneous absorbing media.
    Artoni M; La Rocca GC
    Phys Rev Lett; 2006 Feb; 96(7):073905. PubMed ID: 16606093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities.
    Peng B; Özdemir SK; Chen W; Nori F; Yang L
    Nat Commun; 2014 Oct; 5():5082. PubMed ID: 25342088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manipulating light pulses via dynamically controlled photonic band gap.
    André A; Lukin MD
    Phys Rev Lett; 2002 Sep; 89(14):143602. PubMed ID: 12366046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of Autler-Townes splitting in high-order nonlinear processes.
    Zhang Y; Nie Z; Wang Z; Li C; Wen F; Xiao M
    Opt Lett; 2010 Oct; 35(20):3420-2. PubMed ID: 20967086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Objectively discerning Autler-Townes splitting from electromagnetically induced transparency.
    Anisimov PM; Dowling JP; Sanders BC
    Phys Rev Lett; 2011 Oct; 107(16):163604. PubMed ID: 22107383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of Autler-Townes splitting in six-wave mixing.
    Zhang Y; Li P; Zheng H; Wang Z; Chen H; Li C; Zhang R; Xiao M
    Opt Express; 2011 Apr; 19(8):7769-77. PubMed ID: 21503087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discerning electromagnetically induced transparency from Autler-Townes splitting in plasmonic waveguide and coupled resonators system.
    He LY; Wang TJ; Gao YP; Cao C; Wang C
    Opt Express; 2015 Sep; 23(18):23817-26. PubMed ID: 26368475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromagnetically induced transparency with tunable single-photon pulses.
    Eisaman MD; André A; Massou F; Fleischhauer M; Zibrov AS; Lukin MD
    Nature; 2005 Dec; 438(7069):837-41. PubMed ID: 16341010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmission and reflection of electromagnetically induced absorption grating in homogeneous atomic media.
    Kuang SQ; Wan RG; Du P; Jiang Y; Gao JY
    Opt Express; 2008 Sep; 16(20):15455-62. PubMed ID: 18825182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermo-optically induced transparency on a photonic chip.
    Clementi M; Iadanza S; Schulz SA; Urbinati G; Gerace D; O'Faloain L; Galli M
    Light Sci Appl; 2021 Dec; 10(1):240. PubMed ID: 34862362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling multi-wave mixing signals via photonic band gap of electromagnetically induced absorption grating in atomic media.
    Zhang Y; Wu Z; Yao X; Zhang Z; Chen H; Zhang H; Zhang Y
    Opt Express; 2013 Dec; 21(24):29338-49. PubMed ID: 24514487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-efficiency four-wave mixing beyond pure electromagnetically induced transparency treatment.
    Li HC; Ge GQ; Suhail Zubairy M
    Opt Lett; 2019 Jul; 44(14):3486-3489. PubMed ID: 31305554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation of optical vortices in a nonlinear atomic medium with a photonic band gap.
    Zhang Z; Ma D; Zhang Y; Cao M; Xu Z; Zhang Y
    Opt Lett; 2017 Mar; 42(6):1059-1062. PubMed ID: 28295091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic band engineering in absorbing media for spectrally selective optoelectronic films.
    Qiu B; Lin Y; Arinze ES; Chiu A; Li L; Thon SM
    Opt Express; 2018 Oct; 26(21):26933-26945. PubMed ID: 30469771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplay between six wave mixing photonic band gap signal and second-order nonlinear signal in electromagnetically induced grating.
    Wang Z; Gao M; Ullah Z; Zhang D; Chen H; Gao H; Zhang Y
    Opt Express; 2015 Sep; 23(19):25098-110. PubMed ID: 26406709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental realization of a reconfigurable Lieb photonic lattice in a coherent atomic medium.
    Liang S; Liu Z; Ning S; Zhang Y; Zhang Z
    Opt Lett; 2023 Feb; 48(3):803-806. PubMed ID: 36723593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dressed-state realization of the transition from electromagnetically induced transparency to Autler-Townes splitting in superconducting circuits.
    Li HC; Ge GQ; Zhang HY
    Opt Express; 2015 Apr; 23(8):9844-51. PubMed ID: 25969025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-optical electromagnetically induced transparency using one-dimensional coupled microcavities.
    Naweed A; Goldberg D; Menon VM
    Opt Express; 2014 Jul; 22(15):18818-23. PubMed ID: 25089499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency.
    Hsiao YF; Tsai PJ; Chen HS; Lin SX; Hung CC; Lee CH; Chen YH; Chen YF; Yu IA; Chen YC
    Phys Rev Lett; 2018 May; 120(18):183602. PubMed ID: 29775362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled light-pulse propagation via dynamically induced double photonic band gaps.
    Wan RG; Kou J; Kuang SQ; Jiang L; Gao JY
    Opt Express; 2010 Jul; 18(15):15591-6. PubMed ID: 20720939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.