These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 16606097)
1. Defect chaos and bursts: hexagonal rotating convection and the complex Ginzburg-Landau equation. Madruga S; Riecke H; Pesch W Phys Rev Lett; 2006 Feb; 96(7):074501. PubMed ID: 16606097 [TBL] [Abstract][Full Text] [Related]
2. Defect chaos of oscillating hexagons in rotating convection. Echebarria B; Riecke H Phys Rev Lett; 2000 May; 84(21):4838-41. PubMed ID: 10990811 [TBL] [Abstract][Full Text] [Related]
3. Hexagons and spiral defect chaos in non-Boussinesq convection at low Prandtl numbers. Madruga S; Riecke H Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026210. PubMed ID: 17358408 [TBL] [Abstract][Full Text] [Related]
4. Transition to chaos of natural convection between two infinite differentially heated vertical plates. Gao Z; Sergent A; Podvin B; Xin S; Le Quéré P; Tuckerman LS Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023010. PubMed ID: 24032927 [TBL] [Abstract][Full Text] [Related]
5. Transition from pulses to fronts in the cubic-quintic complex Ginzburg-Landau equation. Gutiérrez P; Escaff D; Descalzi O Philos Trans A Math Phys Eng Sci; 2009 Aug; 367(1901):3227-38. PubMed ID: 19620120 [TBL] [Abstract][Full Text] [Related]
6. Time-delay autosynchronization control of defect turbulence in the cubic-quintic complex Ginzburg-Landau equation. Gonpe Tafo JB; Nana L; Kofane TC Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032911. PubMed ID: 24125329 [TBL] [Abstract][Full Text] [Related]
7. Long-living periodic solutions of complex cubic-quintic Ginzburg-Landau equation in the presence of intrapulse Raman scattering: A bifurcation and numerical study. Uzunov IM; Nikolov SG; Arabadzhiev TN; Georgiev ZD Phys Rev E; 2024 Aug; 110(2-1):024214. PubMed ID: 39295015 [TBL] [Abstract][Full Text] [Related]
8. Nonlinear convection of binary liquids in a porous medium. Rameshwar Y; Anuradha V; Srinivas G; Pérez LM; Laroze D; Pleiner H Chaos; 2018 Jul; 28(7):075512. PubMed ID: 30070520 [TBL] [Abstract][Full Text] [Related]
9. Stability of hexagonal patterns in Bénard-Marangoni convection. Echebarria B; Pérez-García C Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066307. PubMed ID: 11415227 [TBL] [Abstract][Full Text] [Related]
10. Finite wavelength instabilities in a slow mode coupled complex ginzburg-landau equation. Ipsen M; Sorensen PG Phys Rev Lett; 2000 Mar; 84(11):2389-92. PubMed ID: 11018892 [TBL] [Abstract][Full Text] [Related]
11. Statistics of defect trajectories in spatio-temporal chaos in inclined layer convection and the complex Ginzburg-Landau equation. Huepe C; Riecke H; Daniels KE; Bodenschatz E Chaos; 2004 Sep; 14(3):864-74. PubMed ID: 15446997 [TBL] [Abstract][Full Text] [Related]
12. Static, oscillating modulus, and moving pulses in the one-dimensional quintic complex Ginzburg-Landau equation: an analytical approach. Descalzi O Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046210. PubMed ID: 16383515 [TBL] [Abstract][Full Text] [Related]
13. Transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg-Landau equation under the influence of nonlinear gain and higher-order effects. Uzunov IM; Georgiev ZD; Arabadzhiev TN Phys Rev E; 2018 May; 97(5-1):052215. PubMed ID: 29906910 [TBL] [Abstract][Full Text] [Related]
14. Vortex induced rotation of clusters of localized states in the complex Ginzburg-Landau equation. Skryabin DV; Vladimirov AG Phys Rev Lett; 2002 Jul; 89(4):044101. PubMed ID: 12144483 [TBL] [Abstract][Full Text] [Related]
15. Exploding dissipative solitons: the analog of the Ruelle-Takens route for spatially localized solutions. Descalzi O; Cartes C; Cisternas J; Brand HR Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056214. PubMed ID: 21728637 [TBL] [Abstract][Full Text] [Related]
16. The Ginzburg-Landau approach to oscillatory media. Kramer L; Hynne F; Graae Sorenson P; Walgraef D Chaos; 1994 Sep; 4(3):443-452. PubMed ID: 12780119 [TBL] [Abstract][Full Text] [Related]
17. Extreme amplitude spikes in a laser model described by the complex Ginzburg-Landau equation. Chang W; Soto-Crespo JM; Vouzas P; Akhmediev N Opt Lett; 2015 Jul; 40(13):2949-52. PubMed ID: 26125339 [TBL] [Abstract][Full Text] [Related]
18. Dynamical models for dissipative localized waves of the complex Ginzburg-Landau equation. Tsoy EN; Ankiewicz A; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036621. PubMed ID: 16605691 [TBL] [Abstract][Full Text] [Related]
19. Multiresonant forcing of the complex Ginzburg-Landau equation: pattern selection. Conway JM; Riecke H Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):057202. PubMed ID: 18233797 [TBL] [Abstract][Full Text] [Related]
20. Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations. Skarka V; Aleksić NB Phys Rev Lett; 2006 Jan; 96(1):013903. PubMed ID: 16486455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]