These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 16606175)

  • 1. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks.
    Taichenachev AV; Yudin VI; Oates CW; Hoyt CW; Barber ZW; Hollberg L
    Phys Rev Lett; 2006 Mar; 96(8):083001. PubMed ID: 16606175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice.
    Barber ZW; Hoyt CW; Oates CW; Hollberg L; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2006 Mar; 96(8):083002. PubMed ID: 16606176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG; Oates CW
    Phys Rev Lett; 2008 Nov; 101(19):193601. PubMed ID: 19113267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical clocks based on ultranarrow three-photon resonances in alkaline Earth atoms.
    Hong T; Cramer C; Nagourney W; Fortson EN
    Phys Rev Lett; 2005 Feb; 94(5):050801. PubMed ID: 15783624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sr lattice clock at 1 x 10(-16) fractional uncertainty by remote optical evaluation with a Ca clock.
    Ludlow AD; Zelevinsky T; Campbell GK; Blatt S; Boyd MM; de Miranda MH; Martin MJ; Thomsen JW; Foreman SM; Ye J; Fortier TM; Stalnaker JE; Diddams SA; Le Coq Y; Barber ZW; Poli N; Lemke ND; Beck KM; Oates CW
    Science; 2008 Mar; 319(5871):1805-8. PubMed ID: 18276849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical lattice polarization effects on hyperpolarizability of atomic clock transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG
    Phys Rev Lett; 2006 Oct; 97(17):173601. PubMed ID: 17155474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation and absolute frequency measurements of the 1S0-3P0 optical clock transition in neutral ytterbium.
    Hoyt CW; Barber ZW; Oates CW; Fortier TM; Diddams SA; Hollberg L
    Phys Rev Lett; 2005 Aug; 95(8):083003. PubMed ID: 16196856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When should we change the definition of the second?
    Gill P
    Philos Trans A Math Phys Eng Sci; 2011 Oct; 369(1953):4109-30. PubMed ID: 21930568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency Ratio of (199)Hg and (87)Sr Optical Lattice Clocks beyond the SI Limit.
    Yamanaka K; Ohmae N; Ushijima I; Takamoto M; Katori H
    Phys Rev Lett; 2015 Jun; 114(23):230801. PubMed ID: 26196788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic evaluation of a
    Gao Q; Zhou M; Han C; Li S; Zhang S; Yao Y; Li B; Qiao H; Ai D; Lou G; Zhang M; Jiang Y; Bi Z; Ma L; Xu X
    Sci Rep; 2018 May; 8(1):8022. PubMed ID: 29789631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancellation of stark shifts in optical lattice clocks by use of pulsed Raman and electromagnetically induced transparency techniques.
    Zanon-Willette T; Ludlow AD; Blatt S; Boyd MM; Arimondo E; Ye J
    Phys Rev Lett; 2006 Dec; 97(23):233001. PubMed ID: 17280198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optical atomic clock based on a highly charged ion.
    King SA; Spieß LJ; Micke P; Wilzewski A; Leopold T; Benkler E; Lange R; Huntemann N; Surzhykov A; Yerokhin VA; Crespo López-Urrutia JR; Schmidt PO
    Nature; 2022 Nov; 611(7934):43-47. PubMed ID: 36323811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Lattice Clocks with Weakly Bound Molecules.
    Borkowski M
    Phys Rev Lett; 2018 Feb; 120(8):083202. PubMed ID: 29542992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Network of Atom Clocks: A Possible Implementation with Neutral Atoms.
    Kómár P; Topcu T; Kessler EM; Derevianko A; Vuletić V; Ye J; Lukin MD
    Phys Rev Lett; 2016 Aug; 117(6):060506. PubMed ID: 27541452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks.
    Akamatsu D; Yasuda M; Inaba H; Hosaka K; Tanabe T; Onae A; Hong FL
    Opt Express; 2014 Apr; 22(7):7898-905. PubMed ID: 24718165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons.
    Lisdat Ch; Winfred JS; Middelmann T; Riehle F; Sterr U
    Phys Rev Lett; 2009 Aug; 103(9):090801. PubMed ID: 19792777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s.
    Nicholson TL; Martin MJ; Williams JR; Bloom BJ; Bishof M; Swallows MD; Campbell SL; Ye J
    Phys Rev Lett; 2012 Dec; 109(23):230801. PubMed ID: 23368177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic clock performance enabling geodesy below the centimetre level.
    McGrew WF; Zhang X; Fasano RJ; Schäffer SA; Beloy K; Nicolodi D; Brown RC; Hinkley N; Milani G; Schioppo M; Yoon TH; Ludlow AD
    Nature; 2018 Dec; 564(7734):87-90. PubMed ID: 30487601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forbidden atomic transitions driven by an intensity-modulated laser trap.
    Moore KR; Anderson SE; Raithel G
    Nat Commun; 2015 Jan; 6():6090. PubMed ID: 25600089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.