These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 16606176)

  • 41. High-accuracy optical clock via three-level coherence in neutral bosonic 88Sr.
    Santra R; Arimondo E; Ido T; Greene CH; Ye J
    Phys Rev Lett; 2005 May; 94(17):173002. PubMed ID: 15904285
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multipolar Polarizabilities and Hyperpolarizabilities in the Sr Optical Lattice Clock.
    Porsev SG; Safronova MS; Safronova UI; Kozlov MG
    Phys Rev Lett; 2018 Feb; 120(6):063204. PubMed ID: 29481257
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Accuracy evaluation of an optical lattice clock with bosonic atoms.
    Baillard X; Fouché M; Le Targat R; Westergaard PG; Lecallier A; Le Coq Y; Rovera GD; Bize S; Lemonde P
    Opt Lett; 2007 Jul; 32(13):1812-4. PubMed ID: 17603578
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Magic frequencies for cesium primary-frequency standard.
    Flambaum VV; Dzuba VA; Derevianko A
    Phys Rev Lett; 2008 Nov; 101(22):220801. PubMed ID: 19113470
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optical lattice polarization effects on hyperpolarizability of atomic clock transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG
    Phys Rev Lett; 2006 Oct; 97(17):173601. PubMed ID: 17155474
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Micromagic clock: microwave clock based on atoms in an engineered optical lattice.
    Beloy K; Derevianko A; Dzuba VA; Flambaum VV
    Phys Rev Lett; 2009 Mar; 102(12):120801. PubMed ID: 19392262
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Faraday-Shielded dc Stark-Shift-Free Optical Lattice Clock.
    Beloy K; Zhang X; McGrew WF; Hinkley N; Yoon TH; Nicolodi D; Fasano RJ; Schäffer SA; Brown RC; Ludlow AD
    Phys Rev Lett; 2018 May; 120(18):183201. PubMed ID: 29775346
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prospects for optical clocks with a blue-detuned lattice.
    Takamoto M; Katori H; Marmo SI; Ovsiannikov VD; Pal'chikov VG
    Phys Rev Lett; 2009 Feb; 102(6):063002. PubMed ID: 19257584
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Carrier thermometry of cold ytterbium atoms in an optical lattice clock.
    Han C; Zhou M; Zhang X; Gao Q; Xu Y; Li S; Zhang S; Xu X
    Sci Rep; 2018 May; 8(1):7927. PubMed ID: 29784962
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Magic wavelength to make optical lattice clocks insensitive to atomic motion.
    Katori H; Hashiguchi K; Il'inova EY; Ovsiannikov VD
    Phys Rev Lett; 2009 Oct; 103(15):153004. PubMed ID: 19905634
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Luminescence spectroscopy of matrix-isolated atomic manganese: excitation of the "forbidden" a6D(J)<-->a6S transitions.
    Collier MA; Ryan MC; McCaffrey JG
    J Chem Phys; 2005 Jul; 123(4):044508. PubMed ID: 16095370
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Resolved atomic interaction sidebands in an optical clock transition.
    Bishof M; Lin Y; Swallows MD; Gorshkov AV; Ye J; Rey AM
    Phys Rev Lett; 2011 Jun; 106(25):250801. PubMed ID: 21770623
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Studies on the optogalvanic effect and isotope-selective excitation of ytterbium in a hollow cathode discharge lamp using a pulsed dye laser.
    Kumar P; Kumar J; Prakash O; Saini VK; Dixit SK; Nakhe SV
    Appl Spectrosc; 2013 Sep; 67(9):1036-41. PubMed ID: 24067634
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Observation and cancellation of a perturbing dc stark shift in strontium optical lattice clocks.
    Lodewyck J; Zawada M; Lorini L; Gurov M; Lemonde P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):411-5. PubMed ID: 22481773
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical clock with ultracold neutral atoms.
    Wilpers G; Binnewies T; Degenhardt C; Sterr U; Helmcke J; Riehle F
    Phys Rev Lett; 2002 Dec; 89(23):230801. PubMed ID: 12484992
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement.
    Matsubara K; Hachisu H; Li Y; Nagano S; Locke C; Nogami A; Kajita M; Hayasaka K; Ido T; Hosokawa M
    Opt Express; 2012 Sep; 20(20):22034-41. PubMed ID: 23037353
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prospects for a millihertz-linewidth laser.
    Meiser D; Ye J; Carlson DR; Holland MJ
    Phys Rev Lett; 2009 Apr; 102(16):163601. PubMed ID: 19518709
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A pyramid MOT with integrated optical cavities as a cold atom platform for an optical lattice clock.
    Bowden W; Hobson R; Hill IR; Vianello A; Schioppo M; Silva A; Margolis HS; Baird PEG; Gill P
    Sci Rep; 2019 Aug; 9(1):11704. PubMed ID: 31406188
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Long-range interacting many-body systems with alkaline-earth-metal atoms.
    Olmos B; Yu D; Singh Y; Schreck F; Bongs K; Lesanovsky I
    Phys Rev Lett; 2013 Apr; 110(14):143602. PubMed ID: 25166986
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Deep optical trap for cold alkaline-Earth atoms.
    Cruz LS; Sereno M; Cruz FC
    Opt Express; 2008 Mar; 16(5):2909-14. PubMed ID: 18542375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.