These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 16606197)

  • 1. Nonlinear ripple dynamics on amorphous surfaces patterned by ion beam sputtering.
    Muñoz-García J; Castro M; Cuerno R
    Phys Rev Lett; 2006 Mar; 96(8):086101. PubMed ID: 16606197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-organized ordering of nanostructures produced by ion-beam sputtering.
    Castro M; Cuerno R; Vázquez L; Gago R
    Phys Rev Lett; 2005 Jan; 94(1):016102. PubMed ID: 15698100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independence of interrupted coarsening on initial system order: ion-beam nanopatterning of amorphous versus crystalline silicon targets.
    Muñoz-García J; Gago R; Cuerno R; Sánchez-García JA; Redondo-Cubero A; Castro M; Vázquez L
    J Phys Condens Matter; 2012 Sep; 24(37):375302. PubMed ID: 22913935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ripple coarsening on ion beam-eroded surfaces.
    Teichmann M; Lorbeer J; Frost F; Rauschenbach B
    Nanoscale Res Lett; 2014; 9(1):439. PubMed ID: 25302058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulating discrete models of pattern formation by ion beam sputtering.
    Hartmann AK; Kree R; Yasseri T
    J Phys Condens Matter; 2009 Jun; 21(22):224015. PubMed ID: 21715753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The morphology of amorphous SiO(2) surfaces during low energy ion sputtering.
    Keller A; Facsko S; Möller W
    J Phys Condens Matter; 2009 Dec; 21(49):495305. PubMed ID: 21836193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of morphology to surface transport in ion-beam-irradiated surfaces: normal incidence and rotating targets.
    Muñoz-García J; Cuerno R; Castro M
    J Phys Condens Matter; 2009 Jun; 21(22):224020. PubMed ID: 21715758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid coarsening of ion beam ripple patterns by defect annihilation.
    Hansen H; Redinger A; Messlinger S; Stoian G; Krug J; Michely T
    Phys Rev Lett; 2009 Apr; 102(14):146103. PubMed ID: 19392458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dislocation dynamics and surface coarsening of rippled states in the epitaxial growth and erosion on (110) crystal surfaces.
    Golubović L; Levandovsky A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051606. PubMed ID: 18643078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early stage of ripple formation on Ge(001) surfaces under near-normal ion beam sputtering.
    Carbone D; Alija A; Plantevin O; Gago R; Facsko S; Metzger TH
    Nanotechnology; 2008 Jan; 19(3):035304. PubMed ID: 21817567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion-induced nanopatterns on semiconductor surfaces investigated by grazing incidence x-ray scattering techniques.
    Carbone D; Biermanns A; Ziberi B; Frost F; Plantevin O; Pietsch U; Metzger TH
    J Phys Condens Matter; 2009 Jun; 21(22):224007. PubMed ID: 21715746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sand ripple dynamics in the case of out-of-equilibrium aeolian regimes.
    Misbah C; Valance A
    Eur Phys J E Soft Matter; 2003 Dec; 12(4):523-9. PubMed ID: 15007749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of aeolian ripples and sand sorting.
    Manukyan E; Prigozhin L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031303. PubMed ID: 19391931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly ordered nanopatterns on Ge and Si surfaces by ion beam sputtering.
    Ziberi B; Cornejo M; Frost F; Rauschenbach B
    J Phys Condens Matter; 2009 Jun; 21(22):224003. PubMed ID: 21715742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aeolian sand ripples: experimental study of fully developed states.
    Andreotti B; Claudin P; Pouliquen O
    Phys Rev Lett; 2006 Jan; 96(2):028001. PubMed ID: 16486644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular dynamics simulation of ion-induced ripple growth.
    Süle P; Heinig KH
    J Chem Phys; 2009 Nov; 131(20):204704. PubMed ID: 19947701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface morphology of molybdenum silicide films upon low-energy ion beam sputtering.
    Gago R; Jaafar M; Palomares FJ
    J Phys Condens Matter; 2018 Jul; 30(26):264003. PubMed ID: 29762135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low energy Ar+ ion beam irradiation effects on Si ripple pattern.
    Pahlovy SA; Yanagimoto K; Miyamoto I
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1068-73. PubMed ID: 21456140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear dynamics of Aeolian sand ripples.
    Prigozhin L
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Jul; 60(1):729-33. PubMed ID: 11969814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of growth and ordering of Ag nanoparticle arrays on ripple patterned alumina surfaces for strong plasmonic coupling.
    Camelio S; Vandenhecke E; Rousselet S; Babonneau D
    Nanotechnology; 2014 Jan; 25(3):035706. PubMed ID: 24356668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.