These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16606236)

  • 1. Cochlea's graded curvature effect on low frequency waves.
    Manoussaki D; Dimitriadis EK; Chadwick RS
    Phys Rev Lett; 2006 Mar; 96(8):088701. PubMed ID: 16606236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct measurement of intra-cochlear pressure waves.
    Olson ES
    Nature; 1999 Dec; 402(6761):526-9. PubMed ID: 10591211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The physics of hearing: fluid mechanics and the active process of the inner ear.
    Reichenbach T; Hudspeth AJ
    Rep Prog Phys; 2014 Jul; 77(7):076601. PubMed ID: 25006839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hearing. Spreading the fluid word.
    Ashmore J; de Boer J
    Nature; 1999 Dec; 402(6761):476-7. PubMed ID: 10591203
    [No Abstract]   [Full Text] [Related]  

  • 5. How does the inner ear generate distortion product otoacoustic emissions?. Results from a realistic model of the human cochlea.
    Vetesnik A; Nobili R; Gummer A
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):347-52. PubMed ID: 17065828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cochlear amplifier as a standing wave: "squirting" waves between rows of outer hair cells?
    Bell A; Fletcher NH
    J Acoust Soc Am; 2004 Aug; 116(2):1016-24. PubMed ID: 15376668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual traveling waves in an inner ear model with two degrees of freedom.
    Lamb JS; Chadwick RS
    Phys Rev Lett; 2011 Aug; 107(8):088101. PubMed ID: 21929207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Stiffness gradient of the basilar membrane and tonotopia in the internal ear of mammals].
    Prokof'eva LI; Chernyĭ AG
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1987; (3):44-50. PubMed ID: 3580419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid coupling in a discrete model of cochlear mechanics.
    Elliott SJ; Lineton B; Ni G
    J Acoust Soc Am; 2011 Sep; 130(3):1441-51. PubMed ID: 21895085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of basilar membrane arch and radial tension on the travelling wave in gerbil cochlea.
    Chan WX; Yoon YJ
    Hear Res; 2015 Sep; 327():136-42. PubMed ID: 26070425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency analysis in the cochlea and the traveling wave of von Békésy.
    Naftalin L
    Physiol Chem Phys; 1980; 12(6):521-6. PubMed ID: 7267738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efferent-mediated control of basilar membrane motion.
    Cooper NP; Guinan JJ
    J Physiol; 2006 Oct; 576(Pt 1):49-54. PubMed ID: 16901947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-domain analysis of a three-dimensional numerical model of the human spiral cochlea at medium intensity.
    Yao W; Zhao Z; Wang J; Duan M
    Comput Biol Med; 2021 Sep; 136():104756. PubMed ID: 34388464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Otoacoustic emissions from residual oscillations of the cochlear basilar membrane in a human ear model.
    Nobili R; Vetesnik A; Turicchia L; Mammano F
    J Assoc Res Otolaryngol; 2003 Dec; 4(4):478-94. PubMed ID: 14716508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cochlear model with three-dimensional fluid, inner sulcus and feed-forward mechanism.
    Steele CR; Lim KM
    Audiol Neurootol; 1999; 4(3-4):197-203. PubMed ID: 10187930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forward and reverse waves in nonclassical models of the cochlea.
    de Boer E
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2819-21. PubMed ID: 17550180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of the characteristics of two types of pressure waves in the cochlea: theoretical considerations.
    Andoh M; Wada H
    J Acoust Soc Am; 2004 Jul; 116(1):417-25. PubMed ID: 15296002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical model of an arched basilar membrane in the gerbil cochlea.
    Chan WX; Lee SH; Kim N; Shin CS; Yoon YJ
    Hear Res; 2017 Mar; 345():1-9. PubMed ID: 27986594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basilar membrane motion in a spiral-shaped cochlea.
    Viergever MA
    J Acoust Soc Am; 1978 Oct; 64(4):1048-53. PubMed ID: 744829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stiffness of the gerbil basilar membrane: radial and longitudinal variations.
    Emadi G; Richter CP; Dallos P
    J Neurophysiol; 2004 Jan; 91(1):474-88. PubMed ID: 14523077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.