These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 16606236)

  • 21. Effect of basilar membrane radial velocity profile on fluid coupling in the cochlea.
    Ni G; Elliott SJ
    J Acoust Soc Am; 2013 Mar; 133(3):EL181-7. PubMed ID: 23464126
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonlinearity in intracochlear pressure.
    Olson ES; Dong W
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):359-64. PubMed ID: 17065830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Waves on Reissner's membrane: a mechanism for the propagation of otoacoustic emissions from the cochlea.
    Reichenbach T; Stefanovic A; Nin F; Hudspeth AJ
    Cell Rep; 2012 Apr; 1(4):374-84. PubMed ID: 22580949
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [A mechanical simulation model of the basilar membrane of the cochlea].
    Miao J; Xiao Z; Zhou L
    Nan Fang Yi Ke Da Xue Xue Bao; 2014 Jan; 34(1):79-83. PubMed ID: 24463122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of cochlear shape on low-frequency hearing.
    Manoussaki D; Chadwick RS; Ketten DR; Arruda J; Dimitriadis EK; O'Malley JT
    Proc Natl Acad Sci U S A; 2008 Apr; 105(16):6162-6. PubMed ID: 18413615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-Dimensional Finite Element Modeling of Blast Wave Transmission From the External Ear to a Spiral Cochlea.
    Brown MA; Bradshaw JJ; Gan RZ
    J Biomech Eng; 2022 Jan; 144(1):. PubMed ID: 34318317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A rational approach to the traveling wave phenomenon.
    Tonndorf J
    Am J Otolaryngol; 1979; 1(1):83-93. PubMed ID: 552807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active traveling wave in the cochlea.
    Duke T; Jülicher F
    Phys Rev Lett; 2003 Apr; 90(15):158101. PubMed ID: 12732074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Frequency tuning of mechanical responses in the mammalian cochlea.
    Robles L; Alcayaga C
    Biol Res; 1996; 29(3):325-31. PubMed ID: 9278704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Method for computing motion in a two-dimensional cochlear model.
    Sondhi MM
    J Acoust Soc Am; 1978 May; 63(5):1468-77. PubMed ID: 690328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonlinear and active two-dimensional cochlear models: time-domain solution.
    Diependaal RJ; Viergever MA
    J Acoust Soc Am; 1989 Feb; 85(2):803-12. PubMed ID: 2925995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Oscillations of the internal ear basilar membrane in the sonic and ultrasonic range from the data of mathematical analysis of the hydrodynamic model of the cochlea].
    Sagalovich BM; Krasil'nikov IuI; Burov AV
    Biofizika; 1990; 35(1):124-7. PubMed ID: 2346755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [A hydrodynamic model of a cochlea with a discrete basilar membrane].
    Popov IuV
    Fiziol Zh (1994); 1997; 43(3-4):40-7. PubMed ID: 9303801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Timing of cochlear feedback: spatial and temporal representation of a tone across the basilar membrane.
    Nilsen KE; Russell IJ
    Nat Neurosci; 1999 Jul; 2(7):642-8. PubMed ID: 10404197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A cylindrical cochlea model: the bridge between two and three dimensions.
    de Boer E
    Hear Res; 1980 Aug; 3(2):109-31. PubMed ID: 7419481
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developing a physical model of the human cochlea using micro-fabrication methods.
    Wittbrodt MJ; Steele CR; Puria S
    Audiol Neurootol; 2006; 11(2):104-12. PubMed ID: 16439833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning the cochlea: wave-mediated positive feedback between cells.
    Bell A
    Biol Cybern; 2007 Apr; 96(4):421-38. PubMed ID: 17216524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep-water waves in the cochlea.
    de Boer E
    Hear Res; 1980 Aug; 3(2):97-108. PubMed ID: 7419485
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Supporting evidence for reverse cochlear traveling waves.
    Dong W; Olson ES
    J Acoust Soc Am; 2008 Jan; 123(1):222-40. PubMed ID: 18177153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanical preprocessing of amplitude-modulated sounds in the apex of the cochlea.
    Cooper NP
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):353-8. PubMed ID: 17065829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.