These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16606263)

  • 1. Acoustically induced transparency in optically dense resonance medium.
    Radeonychev YV; Tokman MD; Litvak AG; Kocharovskaya O
    Phys Rev Lett; 2006 Mar; 96(9):093602. PubMed ID: 16606263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extremely short pulses via stark modulation of the atomic transition frequencies.
    Radeonychev YV; Polovinkin VA; Kocharovskaya O
    Phys Rev Lett; 2010 Oct; 105(18):183902. PubMed ID: 21231106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustically induced transparency for synchrotron hard x-ray photons.
    Khairulin IR; Radeonychev YV; Antonov VA; Kocharovskaya O
    Sci Rep; 2021 Apr; 11(1):7930. PubMed ID: 33846377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of light in the atomic medium induced by the Hermite-cosine-Gauss field.
    Wei X; Chen B; Wang C; Cheng J
    Appl Opt; 2014 Nov; 53(33):7937-41. PubMed ID: 25607870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation of electromagnetically induced transparency into enhanced absorption with a standing-wave coupling field in an Rb vapor cell.
    Bae IH; Moon HS; Kim MK; Lee L; Kim JB
    Opt Express; 2010 Jan; 18(2):1389-97. PubMed ID: 20173966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of terahertz radiation via an electromagnetically induced transparency at ion acoustic frequency region in laser-produced dense plasmas.
    Nakagawa M; Kodama R; Higashiguchi T; Yugami N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):025402. PubMed ID: 19792190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switching a plasmalike metamaterial via embedded resonant atoms exhibiting electromagnetically induced transparency.
    Chakrabarti S; Ramakrishna SA; Wanare H
    Opt Lett; 2009 Dec; 34(23):3728-30. PubMed ID: 19953176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switching from "absorption within transparency" to "transparency within transparency" in an electromagnetically induced absorption dominated transition.
    Dahl K; Molella LS; Rinkleff RH; Danzmann K
    Opt Lett; 2008 May; 33(9):983-5. PubMed ID: 18451960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Few-cycle attosecond pulses via periodic resonance interaction with hydrogenlike atoms.
    Polovinkin VA; Radeonychev YV; Kocharovskaya O
    Opt Lett; 2011 Jun; 36(12):2296-8. PubMed ID: 21685998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling the microwave amplitude in optically pumped cesium beam frequency standards.
    Audoin C; Hamouda F; Chassagne L; Barillet R
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(2):407-13. PubMed ID: 18238438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance-order-dependent plasmon-induced transparency in orthogonally arranged nanocavities.
    Ichiji N; Kubo A
    Opt Lett; 2022 Jan; 47(2):265-268. PubMed ID: 35030583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Propagation of complex shaped ultrafast pulses in highly optically dense samples.
    Davis JC; Fetterman MR; Warren WS; Goswami D
    J Chem Phys; 2008 Apr; 128(15):154312. PubMed ID: 18433214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonant laser ablation of metals detected by atomic emission in a microwave plasma and by inductively coupled plasma mass spectrometry.
    Cleveland D; Stchur P; Hou X; Yang KX; Zhou J; Michel RG
    Appl Spectrosc; 2005 Dec; 59(12):1427-44. PubMed ID: 16390581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-loss metamaterials based on classical electromagnetically induced transparency.
    Tassin P; Zhang L; Koschny T; Economou EN; Soukoulis CM
    Phys Rev Lett; 2009 Feb; 102(5):053901. PubMed ID: 19257513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resonant two-photon absorption and electromagnetically induced transparency in open ladder-type atomic system.
    Moon HS; Noh HR
    Opt Express; 2013 Mar; 21(6):7447-55. PubMed ID: 23546128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optomechanically induced transparency.
    Weis S; Rivière R; Deléglise S; Gavartin E; Arcizet O; Schliesser A; Kippenberg TJ
    Science; 2010 Dec; 330(6010):1520-3. PubMed ID: 21071628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polaritonic stop-band transparency via exciton-biexciton coupling in CuCl.
    Chesi S; Artoni M; La Rocca GC; Bassani F; Mysyrowicz A
    Phys Rev Lett; 2003 Aug; 91(5):057402. PubMed ID: 12906631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shaping quantum pulses of light via coherent atomic memory.
    Eisaman MD; Childress L; André A; Massou F; Zibrov AS; Lukin MD
    Phys Rev Lett; 2004 Dec; 93(23):233602. PubMed ID: 15601158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coexistence of a self-induced transparency soliton and a Bragg soliton.
    Tseng HY; Chi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056606. PubMed ID: 12513622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant microwave absorption in thermally deposited au nanoparticle films near percolation coverage.
    Obrzut J; Douglas JF; Kirillov O; Sharifi F; Liddle JA
    Langmuir; 2013 Jul; 29(28):9010-5. PubMed ID: 23815370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.