These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16606284)

  • 1. Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires.
    Kodambaka S; Tersoff J; Reuter MC; Ross FM
    Phys Rev Lett; 2006 Mar; 96(9):096105. PubMed ID: 16606284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxide mediated liquid-solid growth of high aspect ratio aligned gold silicide nanowires on Si(110) substrates.
    Bhatta UM; Rath A; Dash JK; Ghatak J; Yi-Feng L; Liu CP; Satyam PV
    Nanotechnology; 2009 Nov; 20(46):465601. PubMed ID: 19843987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires.
    Wen CY; Reuter MC; Tersoff J; Stach EA; Ross FM
    Nano Lett; 2010 Feb; 10(2):514-9. PubMed ID: 20041666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Au transport in catalyst coarsening and Si nanowire formation.
    Kim BJ; Tersoff J; Kodambaka S; Jang JS; Stach EA; Ross FM
    Nano Lett; 2014 Aug; 14(8):4554-9. PubMed ID: 25040757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying crystallization- and incorporation-limited regimes during vapor-liquid-solid growth of Si nanowires.
    Pinion CW; Nenon DP; Christesen JD; Cahoon JF
    ACS Nano; 2014 Jun; 8(6):6081-8. PubMed ID: 24815744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of the vapor-liquid-solid growth of silicon nanowires by antimony addition.
    Nimmatoori P; Zhang Q; Dickey EC; Redwing JM
    Nanotechnology; 2009 Jan; 20(2):025607. PubMed ID: 19417276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time observation of the solid-liquid-vapor dissolution of individual tin(IV) oxide nanowires.
    Hudak BM; Chang YJ; Yu L; Li G; Edwards DN; Guiton BS
    ACS Nano; 2014 Jun; 8(6):5441-8. PubMed ID: 24818706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed synthesis of germanium oxide nanowires by vapor-liquid-solid oxidation.
    Gunji M; Thombare SV; Hu S; McIntyre PC
    Nanotechnology; 2012 Sep; 23(38):385603. PubMed ID: 22947505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective growth of silica nanowires using an Au catalyst for optical recognition of interleukin-10.
    Sekhar PK; Ramgir NS; Joshi RK; Bhansali S
    Nanotechnology; 2008 Jun; 19(24):245502. PubMed ID: 21825812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth time-dependent density and surface evolution of silicon nanowires in a vapor-liquid-solid process.
    Lee CY; Kim GS; Lee SY; Kim TH; Seo DW; Lee SK
    J Nanosci Nanotechnol; 2011 Aug; 11(8):6946-52. PubMed ID: 22103103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From droplets to nanowires: dynamics of vapor-liquid-solid growth.
    Schwarz KW; Tersoff J
    Phys Rev Lett; 2009 May; 102(20):206101. PubMed ID: 19519043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during molecular beam epitaxy.
    Dubrovskii VG; Sibirev NV; Cirlin GE; Harmand JC; Ustinov VM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021603. PubMed ID: 16605346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth kinetics of heterostructured GaP-GaAs nanowires.
    Verheijen MA; Immink G; de Smet T; Borgström MT; Bakkers EP
    J Am Chem Soc; 2006 Feb; 128(4):1353-9. PubMed ID: 16433555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth.
    Hofmann S; Sharma R; Wirth CT; Cervantes-Sodi F; Ducati C; Kasama T; Dunin-Borkowski RE; Drucker J; Bennett P; Robertson J
    Nat Mater; 2008 May; 7(5):372-5. PubMed ID: 18327262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Step-flow kinetics model for the vapor-solid-solid Si nanowires growth.
    Cui H; Lü YY; Yang GW; Chen YM; Wang CX
    Nano Lett; 2015 May; 15(5):3640-5. PubMed ID: 25928836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution detection of Au catalyst atoms in Si nanowires.
    Allen JE; Hemesath ER; Perea DE; Lensch-Falk JL; Li ZY; Yin F; Gass MH; Wang P; Bleloch AL; Palmer RE; Lauhon LJ
    Nat Nanotechnol; 2008 Mar; 3(3):168-73. PubMed ID: 18654490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ observations of nanoscale effects in germanium nanowire growth with ternary eutectic alloys.
    Biswas S; O'Regan C; Morris MA; Holmes JD
    Small; 2015 Jan; 11(1):103-11. PubMed ID: 25196560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ observation of morphological change in CdTe nano- and submicron wires.
    Davami K; Ghassemi HM; Sun X; Yassar RS; Lee JS; Meyyappan M
    Nanotechnology; 2011 Oct; 22(43):435204. PubMed ID: 21971180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ magnetic field-assisted low temperature atmospheric growth of GaN nanowires via the vapor-liquid-solid mechanism.
    Kim JS; Mohanty BC; Han CS; Han SJ; Ha GH; Lin L; Cho YS
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):116-21. PubMed ID: 24117213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real time observation of ZnO nanostructure formation via the solid-vapor and solid-solid-vapor mechanisms.
    Kim BJ; Kim MW; Jang JS; Stach EA
    Nanoscale; 2014 Jun; 6(12):6984-90. PubMed ID: 24837497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.