These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 16606902)

  • 1. Experimental implantation and long-term testing of an intraocular vision aid in rabbits.
    Liu DT; Li CL; Lee VY; Lam DS
    Arch Ophthalmol; 2006 Apr; 124(4):609-10; author reply 610. PubMed ID: 16606902
    [No Abstract]   [Full Text] [Related]  

  • 2. Experimental implantation and long-term testing of an intraocular vision aid in rabbits.
    Szurman P; Warga M; Roters S; Grisanti S; Heimann U; Aisenbrey S; Rohrbach JM; Sellhaus B; Ziemssen F; Bartz-Schmidt KU
    Arch Ophthalmol; 2005 Jul; 123(7):964-9. PubMed ID: 16009839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit.
    Schwahn HN; Gekeler F; Kohler K; Kobuch K; Sachs HG; Schulmeyer F; Jakob W; Gabel VP; Zrenner E
    Graefes Arch Clin Exp Ophthalmol; 2001 Dec; 239(12):961-7. PubMed ID: 11820703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implantation of stimulation electrodes in the subretinal space to demonstrate cortical responses in Yucatan minipig in the course of visual prosthesis development.
    Sachs HG; Gekeler F; Schwahn H; Jakob W; Köhler M; Schulmeyer F; Marienhagen J; Brunner U; Framme C
    Eur J Ophthalmol; 2005; 15(4):493-9. PubMed ID: 16001384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomedical engineering. A vision for the blind.
    Wickelgren I
    Science; 2006 May; 312(5777):1124-6. PubMed ID: 16728607
    [No Abstract]   [Full Text] [Related]  

  • 7. Feasibility of microelectrode array (MEA) based on silicone-polyimide hybrid for retina prosthesis.
    Kim ET; Kim C; Lee SW; Seo JM; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4337-41. PubMed ID: 19264890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon LSI-based smart stimulators for retinal prosthesis.
    Ohta J; Tokuda T; Kagawa K; Furumiya T; Uehara A; Terasawa Y; Ozawa M; Fujikado T; Tano Y
    IEEE Eng Med Biol Mag; 2006; 25(5):47-59. PubMed ID: 17020199
    [No Abstract]   [Full Text] [Related]  

  • 9. Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs.
    Chow AY; Pardue MT; Perlman JI; Ball SL; Chow VY; Hetling JR; Peyman GA; Liang C; Stubbs EB; Peachey NS
    J Rehabil Res Dev; 2002; 39(3):313-21. PubMed ID: 12173752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Outer retinal degeneration: an electronic retinal prosthesis as a treatment strategy.
    Loewenstein JI; Montezuma SR; Rizzo JF
    Arch Ophthalmol; 2004 Apr; 122(4):587-96. PubMed ID: 15078678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Advanced research in the retinal prosthesis].
    Zou YY; Wang JT; Li XR
    Zhonghua Yan Ke Za Zhi; 2009 Nov; 45(11):1052-4. PubMed ID: 20137426
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeated transchoroidal implantation and explantation of compound subretinal prostheses: an exploratory study in rabbits.
    Gekeler F; Kobuch K; Blatsios G; Zrenner E; Shinoda K
    Jpn J Ophthalmol; 2010 Sep; 54(5):467-75. PubMed ID: 21052911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers.
    Lee SW; Seo JM; Ha S; Kim ET; Chung H; Kim SJ
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5859-66. PubMed ID: 19553608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal prosthesis: an encouraging first decade with major challenges ahead.
    Rizzo JF; Wyatt J; Humayun M; de Juan E; Liu W; Chow A; Eckmiller R; Zrenner E; Yagi T; Abrams G
    Ophthalmology; 2001 Jan; 108(1):13-4. PubMed ID: 11150256
    [No Abstract]   [Full Text] [Related]  

  • 15. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development.
    Sachs HG; Schanze T; Brunner U; Sailer H; Wiesenack C
    J Neural Eng; 2005 Mar; 2(1):S57-64. PubMed ID: 15876656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The subretinal microphotodiode array retinal prosthesis.
    Chow AY; Peachey NS
    Ophthalmic Res; 1998; 30(3):195-8. PubMed ID: 9618724
    [No Abstract]   [Full Text] [Related]  

  • 17. Development of a micromachined epiretinal vision prosthesis.
    Stieglitz T
    J Neural Eng; 2009 Dec; 6(6):065005. PubMed ID: 19850975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chronic implantation of newly developed suprachoroidal-transretinal stimulation prosthesis in dogs.
    Morimoto T; Kamei M; Nishida K; Sakaguchi H; Kanda H; Ikuno Y; Kishima H; Maruo T; Konoma K; Ozawa M; Nishida K; Fujikado T
    Invest Ophthalmol Vis Sci; 2011 Aug; 52(9):6785-92. PubMed ID: 21743012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical activation via an implanted wireless retinal prosthesis.
    Walter P; Kisvárday ZF; Görtz M; Alteheld N; Rossler G; Stieglitz T; Eysel UT
    Invest Ophthalmol Vis Sci; 2005 May; 46(5):1780-5. PubMed ID: 15851582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of subretinal microphotodiodes for replacement of degenerated photoreceptors.
    Zrenner E; Miliczek KD; Gabel VP; Graf HG; Guenther E; Haemmerle H; Hoefflinger B; Kohler K; Nisch W; Schubert M; Stett A; Weiss S
    Ophthalmic Res; 1997; 29(5):269-80. PubMed ID: 9323718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.