BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 16607669)

  • 1. C-terminal fluorescence labeling of proteins for interaction studies on the single-molecule level.
    Becker CF; Seidel R; Jahnz M; Bacia K; Niederhausen T; Alexandrov K; Schwille P; Goody RS; Engelhard M
    Chembiochem; 2006 Jun; 7(6):891-5. PubMed ID: 16607669
    [No Abstract]   [Full Text] [Related]  

  • 2. Single-molecule fluorescence studies of intrinsically disordered proteins.
    Ferreon AC; Moran CR; Gambin Y; Deniz AA
    Methods Enzymol; 2010; 472():179-204. PubMed ID: 20580965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule study of protein-protein and protein-DNA interaction dynamics.
    Lu HP
    Methods Mol Biol; 2005; 305():385-414. PubMed ID: 15940008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The renaissance of fluorescence resonance energy transfer.
    Selvin PR
    Nat Struct Biol; 2000 Sep; 7(9):730-4. PubMed ID: 10966639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific and stable fluorescence labeling of histidine-tagged proteins for dissecting multi-protein complex formation.
    Lata S; Gavutis M; Tampé R; Piehler J
    J Am Chem Soc; 2006 Feb; 128(7):2365-72. PubMed ID: 16478192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-color single-molecule fluorescence resonance energy transfer.
    Clamme JP; Deniz AA
    Chemphyschem; 2005 Jan; 6(1):74-7. PubMed ID: 15688649
    [No Abstract]   [Full Text] [Related]  

  • 7. [A study of ligand binding to protein using resonance energy transfer from the isoindole fluorescent label to ligand].
    Gryzunov IuA; Komarova MN
    Biofizika; 2004; 49(6):979-86. PubMed ID: 15612536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semisynthetic fluorescent sensor proteins based on self-labeling protein tags.
    Brun MA; Tan KT; Nakata E; Hinner MJ; Johnsson K
    J Am Chem Soc; 2009 Apr; 131(16):5873-84. PubMed ID: 19348459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein recognition by an ensemble of fluorescent DNA G-quadruplexes.
    Margulies D; Hamilton AD
    Angew Chem Int Ed Engl; 2009; 48(10):1771-4. PubMed ID: 19173368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Förster-resonance-energy transfer-based method for fluorescence detection of the protein redox state.
    Kuznetsova S; Zauner G; Schmauder R; Mayboroda OA; Deelder AM; Aartsma TJ; Canters GW
    Anal Biochem; 2006 Mar; 350(1):52-60. PubMed ID: 16430854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule fluorescence studies reveal long-range electron-transfer dynamics through double-stranded DNA.
    Kumbhakar M; Kiel A; Pal H; Herten DP
    Chemphyschem; 2009 Mar; 10(4):629-33. PubMed ID: 19177483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence labels as sensors for oxygen binding of arthropod hemocyanins.
    Erker W; Schoen A; Basché T; Decker H
    Biochem Biophys Res Commun; 2004 Nov; 324(2):893-900. PubMed ID: 15474512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of an intermediate and parallel pathways in protein unfolding from single-molecule fluorescence.
    Orte A; Craggs TD; White SS; Jackson SE; Klenerman D
    J Am Chem Soc; 2008 Jun; 130(25):7898-907. PubMed ID: 18507381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein biosensors based on the principle of fluorescence resonance energy transfer for monitoring cellular dynamics.
    Li IT; Pham E; Truong K
    Biotechnol Lett; 2006 Dec; 28(24):1971-82. PubMed ID: 17021660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Labeling and purification of cellulose-binding proteins for high resolution fluorescence applications.
    Moran-Mirabal JM; Corgie SC; Bolewski JC; Smith HM; Cipriany BR; Craighead HG; Walker LP
    Anal Chem; 2009 Oct; 81(19):7981-7. PubMed ID: 19728729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Position-specific incorporation of fluorescent non-natural amino acids into maltose-binding protein for detection of ligand binding by FRET and fluorescence quenching.
    Iijima I; Hohsaka T
    Chembiochem; 2009 Apr; 10(6):999-1006. PubMed ID: 19301314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence studies of single biomolecules.
    Li H; Ying L; Ren X; Balasubramanian S; Klenerman D
    Biochem Soc Trans; 2004 Nov; 32(Pt 5):753-6. PubMed ID: 15494006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward single-metal-ion sensing by Förster resonance energy transfer.
    Sutter JU; Macmillan AM; Birch DJ; Rolinski OJ
    Ann N Y Acad Sci; 2008; 1130():62-7. PubMed ID: 18596333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and synthesis of an enzyme activity-based labeling molecule with fluorescence spectral change.
    Komatsu T; Kikuchi K; Takakusa H; Hanaoka K; Ueno T; Kamiya M; Urano Y; Nagano T
    J Am Chem Soc; 2006 Dec; 128(50):15946-7. PubMed ID: 17165702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subunit exchange of MjHsp16.5 studied by single-molecule imaging and fluorescence resonance energy transfer.
    Guan Y; Wang Z; Cao A; Lai L; Zhao XS
    J Am Chem Soc; 2006 Jun; 128(22):7203-8. PubMed ID: 16734473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.