These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16607992)

  • 1. In vitro studies toward noninvasive glucose monitoring with optical coherence tomography.
    Kinnunen M; Myllylä R; Jokela T; Vainio S
    Appl Opt; 2006 Apr; 45(10):2251-60. PubMed ID: 16607992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography.
    Sapozhnikova VV; Prough D; Kuranov RV; Cicenaite I; Esenaliev RO
    Exp Biol Med (Maywood); 2006 Sep; 231(8):1323-32. PubMed ID: 16946401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe.
    Sapozhnikova VV; Kuranov RV; Cicenaite I; Esenaliev RO; Prough DS
    J Biomed Opt; 2008; 13(2):021112. PubMed ID: 18465961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting glucose-induced changes in in vitro and in vivo experiments with optical coherence tomography.
    Kinnunen M; Myllylä R; Vainio S
    J Biomed Opt; 2008; 13(2):021111. PubMed ID: 18465960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study.
    Larin KV; Motamedi M; Ashitkov TV; Esenaliev RO
    Phys Med Biol; 2003 May; 48(10):1371-90. PubMed ID: 12812453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomography: a pilot study.
    He R; Wei H; Gu H; Zhu Z; Zhang Y; Guo X; Cai T
    J Biomed Opt; 2012 Oct; 17(10):101513. PubMed ID: 23223989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical coherence tomography-based continuous noninvasive glucose monitoring in patients with diabetes.
    Gabbay RA; Sivarajah S
    Diabetes Technol Ther; 2008 Jun; 10(3):188-93. PubMed ID: 18473692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical coherence tomography for blood glucose monitoring in vitro through spatial and temporal approaches.
    De Pretto LR; Yoshimura TM; Ribeiro MS; Zanardi de Freitas A
    J Biomed Opt; 2016 Aug; 21(8):86007. PubMed ID: 27533444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood glucose monitoring: milking the finger and using the first drop of blood give correct glucose values.
    Fruhstorfer H; Quarder O
    Diabetes Res Clin Pract; 2009 Jul; 85(1):e14-5. PubMed ID: 19447516
    [No Abstract]   [Full Text] [Related]  

  • 10. Noninvasive blood glucose monitoring with optical coherence tomography: a pilot study in human subjects.
    Larin KV; Eledrisi MS; Motamedi M; Esenaliev RO
    Diabetes Care; 2002 Dec; 25(12):2263-7. PubMed ID: 12453971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography.
    Kuranov RV; Sapozhnikova VV; Prough DS; Cicenaite I; Esenaliev RO
    Phys Med Biol; 2006 Aug; 51(16):3885-900. PubMed ID: 16885613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring of glucose permeability in monkey skin in vivo using Optical Coherence Tomography.
    Ghosn MG; Sudheendran N; Wendt M; Glasser A; Tuchin VV; Larin KV
    J Biophotonics; 2010 Jan; 3(1-2):25-33. PubMed ID: 19824024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swept-Source Optical Coherence Tomography-Supervised Biopsy.
    Xu Q; Adabi S; Clayton A; Daveluy S; Mehregan D; Nasiriavanaki M
    Dermatol Surg; 2018 Jun; 44(6):768-775. PubMed ID: 29381540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of Dynamic optical coherence tomography for non-invasive, in vivo microcirculation imaging of the skin.
    Themstrup L; Welzel J; Ciardo S; Kaestle R; Ulrich M; Holmes J; Whitehead R; Sattler EC; Kindermann N; Pellacani G; Jemec GB
    Microvasc Res; 2016 Sep; 107():97-105. PubMed ID: 27235002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoacoustic depth profiling of a skin model for non-invasive glucose measurement.
    Wadamori N; Shinohara R; Ishihara Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5644-7. PubMed ID: 19163997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical coherence tomography in the assessment of acute changes in cutaneous vascular diameter induced by heat stress.
    Carter HH; Gong P; Kirk RW; Es'haghian S; Atkinson CL; Sampson DD; Green DJ; McLaughlin RA
    J Appl Physiol (1985); 2016 Oct; 121(4):965-972. PubMed ID: 27586840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive glucose measurement by monitoring of scattering coefficient during oral glucose tolerance tests. Non-Invasive Task Force.
    Heinemann L; Krämer U; Klötzer HM; Hein M; Volz D; Hermann M; Heise T; Rave K;
    Diabetes Technol Ther; 2000; 2(2):211-20. PubMed ID: 11469261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical coherence tomography of basal cell carcinoma: density and signal attenuation.
    Yücel D; Themstrup L; Manfredi M; Jemec GB
    Skin Res Technol; 2016 Nov; 22(4):497-504. PubMed ID: 27264340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive blood glucose monitoring during oral intake of different sugars with optical coherence tomography in human subjects.
    Zhang Y; Wei H; Yang H; He Y; Wu G; Xie S; Zhu Z; He R
    J Biophotonics; 2013 Sep; 6(9):699-707. PubMed ID: 23225583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical coherence tomography applied to tests of skin care products in humans--a case study.
    Vasquez-Pinto LM; Maldonado EP; Raele MP; Amaral MM; de Freitas AZ
    Skin Res Technol; 2015 Feb; 21(1):90-3. PubMed ID: 25066480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.