These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 16608350)

  • 1. Simulating FRET from tryptophan: is the rotamer model correct?
    Beierlein FR; Othersen OG; Lanig H; Schneider S; Clark T
    J Am Chem Soc; 2006 Apr; 128(15):5142-52. PubMed ID: 16608350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural investigation of Tet repressor loop 154-167: a time-resolved fluorescence study of three single Trp mutants.
    Alberti P; Bombarda E; Kintrup M; Hillen W; Lami H; Piémont E; Doglia SM; Chabbert M
    Arch Biochem Biophys; 1997 Oct; 346(2):230-40. PubMed ID: 9343370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of tryptophan emission wavelength on conformation in cyclic hexapeptides.
    Pan CP; Callis PR; Barkley MD
    J Phys Chem B; 2006 Apr; 110(13):7009-16. PubMed ID: 16571015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophan as a probe for acid-base equilibria in peptides.
    Marquezin CA; Hirata IY; Juliano L; Ito AS
    Biopolymers; 2003; 71(5):569-76. PubMed ID: 14635097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence decay characteristics of indole compounds revealed by time-resolved area-normalized emission spectroscopy.
    Otosu T; Nishimoto E; Yamashita S
    J Phys Chem A; 2009 Mar; 113(12):2847-53. PubMed ID: 19254015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A step toward the prediction of the fluorescence lifetimes of tryptophan residues in proteins based on structural and spectral data.
    Sillen A; Díaz JF; Engelborghs Y
    Protein Sci; 2000 Jan; 9(1):158-69. PubMed ID: 10739258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast-gated intensified charge-coupled device camera to record time-resolved fluorescence spectra of tryptophan.
    Stortelder A; Buijs JB; Bulthuis J; Gooijer C; van der Zwan G
    Appl Spectrosc; 2004 Jun; 58(6):705-10. PubMed ID: 15198823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady-state and picosecond time-resolved fluorescence studies on native and apo seed coat soybean peroxidase.
    Kamal JK; Behere DV
    Biochem Biophys Res Commun; 2001 Nov; 289(2):427-33. PubMed ID: 11716491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved fluorescence of the bacteriophage T4 capsid protein gp23.
    Stortelder A; Buijs JB; Bulthuis J; van der Vies SM; Gooijer C; van der Zwan G
    J Photochem Photobiol B; 2005 Jan; 78(1):53-60. PubMed ID: 15629249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and properties of licochalcone A-human serum albumin complexes in solution: a spectroscopic, photophysical and computational approach to understand drug-protein interaction.
    Monti S; Manet I; Manoli F; Marconi G
    Phys Chem Chem Phys; 2008 Nov; 10(44):6597-606. PubMed ID: 18989470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent effects on the fluorescence quenching of tryptophan by amides via electron transfer. Experimental and computational studies.
    Muiño PL; Callis PR
    J Phys Chem B; 2009 Mar; 113(9):2572-7. PubMed ID: 18672928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of solvents and leucine configuration at position 5 on tryptophan fluorescence in cyclic enkephalin analogues.
    Malicka J; Groth M; Karolczak J; Czaplewski C; Liwo A; Wiczk W
    Biopolymers; 2001 Apr; 58(4):447-57. PubMed ID: 11180057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new approach to interpretation of heterogeneity of fluorescence decay: effect of induced tautomeric shift and enzyme-->ligand fluorescence resonance energy transfer.
    Wlodarczyk J; Kierdaszuk B
    Biophys Chem; 2006 Sep; 123(2-3):146-53. PubMed ID: 16765509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo synthesized proteins with monoexponential fluorescence decay kinetics.
    Broos J; Maddalena F; Hesp BH
    J Am Chem Soc; 2004 Jan; 126(1):22-3. PubMed ID: 14709040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio prediction of tryptophan fluorescence quenching by protein electric field enabled electron transfer.
    Callis PR; Petrenko A; Muiño PL; Tusell JR
    J Phys Chem B; 2007 Sep; 111(35):10335-9. PubMed ID: 17696529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence of tryptophan dipeptides: correlations with the rotamer model.
    Chen RF; Knutson JR; Ziffer H; Porter D
    Biochemistry; 1991 May; 30(21):5184-95. PubMed ID: 2036384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic dynamics in ECFP and Cerulean control fluorescence quantum yield.
    Lelimousin M; Noirclerc-Savoye M; Lazareno-Saez C; Paetzold B; Le Vot S; Chazal R; Macheboeuf P; Field MJ; Bourgeois D; Royant A
    Biochemistry; 2009 Oct; 48(42):10038-46. PubMed ID: 19754158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence and quantum mechanical approach on the interaction of amides and their role on the stability and coexistence of the rotamer conformations of L-tryptophan in aqueous solution.
    Kumaran R; Gayathri S; Augustine Arul Prasad T; Dhenadhayalan N; Keerthiga R; Sureka S; Jeevitha K; Karthick P
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Dec; 243():118791. PubMed ID: 32810781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence of cis-1-amino-2-(3-indolyl)cyclohexane-1-carboxylic acid: a single tryptophan chi(1) rotamer model.
    Liu B; Thalji RK; Adams PD; Fronczek FR; McLaughlin ML; Barkley MD
    J Am Chem Soc; 2002 Nov; 124(44):13329-38. PubMed ID: 12405862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence lifetime imaging of coral fluorescent proteins.
    Cox G; Matz M; Salih A
    Microsc Res Tech; 2007 Mar; 70(3):243-51. PubMed ID: 17279514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.