These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
371 related articles for article (PubMed ID: 16608357)
21. Assignment of the [4Fe-4S] clusters of Ech hydrogenase from Methanosarcina barkeri to individual subunits via the characterization of site-directed mutants. Forzi L; Koch J; Guss AM; Radosevich CG; Metcalf WW; Hedderich R FEBS J; 2005 Sep; 272(18):4741-53. PubMed ID: 16156794 [TBL] [Abstract][Full Text] [Related]
22. Spectroscopic and kinetic characterization of active site mutants of Desulfovibrio fructosovoransNi-Fe hydrogenase. DeLacey AL; Fernandez VM; Rousset M; Cavazza C; Hatchikian EC J Biol Inorg Chem; 2003 Jan; 8(1-2):129-34. PubMed ID: 12459907 [TBL] [Abstract][Full Text] [Related]
23. A third type of hydrogenase catalyzing H2 activation. Shima S; Thauer RK Chem Rec; 2007; 7(1):37-46. PubMed ID: 17304591 [TBL] [Abstract][Full Text] [Related]
24. Functionally relevant interplay between the Fe(4)S(4) cluster and CN(-) ligands in the active site of [FeFe]-hydrogenases. Bruschi M; Greco C; Bertini L; Fantucci P; Ryde U; De Gioia L J Am Chem Soc; 2010 Apr; 132(14):4992-3. PubMed ID: 20302340 [TBL] [Abstract][Full Text] [Related]
25. The active site of the [FeFe]-hydrogenase from Desulfovibrio desulfuricans. II. Redox properties, light sensitivity and CO-ligand exchange as observed by infrared spectroscopy. Roseboom W; De Lacey AL; Fernandez VM; Hatchikian EC; Albracht SP J Biol Inorg Chem; 2006 Jan; 11(1):102-18. PubMed ID: 16323019 [TBL] [Abstract][Full Text] [Related]
26. Rates and Routes of Electron Transfer of [NiFe]-Hydrogenase in an Enzymatic Fuel Cell. Petrenko A; Stein M J Phys Chem B; 2015 Oct; 119(43):13870-82. PubMed ID: 26218232 [TBL] [Abstract][Full Text] [Related]
27. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value. Pershad HR; Duff JL; Heering HA; Duin EC; Albracht SP; Armstrong FA Biochemistry; 1999 Jul; 38(28):8992-9. PubMed ID: 10413472 [TBL] [Abstract][Full Text] [Related]
28. IR spectroelectrochemical study of the binding of carbon monoxide to the active site of Desulfovibrio fructosovorans Ni-Fe hydrogenase. De Lacey AL; Stadler C; Fernandez VM; Hatchikian EC; Fan HJ; Li S; Hall MB J Biol Inorg Chem; 2002 Mar; 7(3):318-26. PubMed ID: 11935356 [TBL] [Abstract][Full Text] [Related]
29. Computational studies of the H-cluster of Fe-only hydrogenases: geometric, electronic, and magnetic properties and their dependence on the [Fe4S4] cubane. Fiedler AT; Brunold TC Inorg Chem; 2005 Dec; 44(25):9322-34. PubMed ID: 16323916 [TBL] [Abstract][Full Text] [Related]
30. A mixed-valent, Fe(II)Fe(I), diiron complex reproduces the unique rotated state of the [FeFe]hydrogenase active site. Liu T; Darensbourg MY J Am Chem Soc; 2007 Jun; 129(22):7008-9. PubMed ID: 17497786 [No Abstract] [Full Text] [Related]
31. The [FeFe]-hydrogenase maturation protein HydF contains a H-cluster like [4Fe4S]-2Fe site. Czech I; Stripp S; Sanganas O; Leidel N; Happe T; Haumann M FEBS Lett; 2011 Jan; 585(1):225-30. PubMed ID: 21130763 [TBL] [Abstract][Full Text] [Related]
32. Hydrogenase/ferredoxin charge-transfer complexes: effect of hydrogenase mutations on the complex association. Long H; King PW; Ghirardi ML; Kim K J Phys Chem A; 2009 Apr; 113(16):4060-7. PubMed ID: 19317477 [TBL] [Abstract][Full Text] [Related]
33. A QM/MM investigation of the activation and catalytic mechanism of Fe-only hydrogenases. Greco C; Bruschi M; De Gioia L; Ryde U Inorg Chem; 2007 Jul; 46(15):5911-21. PubMed ID: 17602468 [TBL] [Abstract][Full Text] [Related]
34. Mechanism of H2 production by the [FeFe]H subcluster of di-iron hydrogenases: implications for abiotic catalysts. Sbraccia C; Zipoli F; Car R; Cohen MH; Dismukes GC; Selloni A J Phys Chem B; 2008 Oct; 112(42):13381-90. PubMed ID: 18826265 [TBL] [Abstract][Full Text] [Related]
35. Crucial role of conserved cysteine residues in the assembly of two iron-sulfur clusters on the CIA protein Nar1. Urzica E; Pierik AJ; Mühlenhoff U; Lill R Biochemistry; 2009 Jun; 48(22):4946-58. PubMed ID: 19385603 [TBL] [Abstract][Full Text] [Related]
36. [NiFe] and [FeFe] hydrogenases studied by advanced magnetic resonance techniques. Lubitz W; Reijerse E; van Gastel M Chem Rev; 2007 Oct; 107(10):4331-65. PubMed ID: 17845059 [No Abstract] [Full Text] [Related]
37. Mechanistic and physiological implications of the interplay among iron-sulfur clusters in [FeFe]-hydrogenases. A QM/MM perspective. Greco C; Bruschi M; Fantucci P; Ryde U; De Gioia L J Am Chem Soc; 2011 Nov; 133(46):18742-9. PubMed ID: 21942468 [TBL] [Abstract][Full Text] [Related]
38. Impact of the iron-sulfur cluster proximal to the active site on the catalytic function of an O2-tolerant NAD(+)-reducing [NiFe]-hydrogenase. Karstens K; Wahlefeld S; Horch M; Grunzel M; Lauterbach L; Lendzian F; Zebger I; Lenz O Biochemistry; 2015 Jan; 54(2):389-403. PubMed ID: 25517969 [TBL] [Abstract][Full Text] [Related]
39. Hydrogenases and H(+)-reduction in primary energy conservation. Vignais PM Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479 [TBL] [Abstract][Full Text] [Related]
40. [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism. Ogata H; Lubitz W; Higuchi Y Dalton Trans; 2009 Oct; (37):7577-87. PubMed ID: 19759926 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]