These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 16608364)
1. Metal supported on dendronized magnetic nanoparticles: highly selective hydroformylation catalysts. Abu-Reziq R; Alper H; Wang D; Post ML J Am Chem Soc; 2006 Apr; 128(15):5279-82. PubMed ID: 16608364 [TBL] [Abstract][Full Text] [Related]
2. Hydrogenation of arenes over silica-supported catalysts that combine a grafted rhodium complex and palladium nanoparticles: evidence for substrate activation on Rh(single-site)-Pd(metal) moieties. Barbaro P; Bianchini C; Dal Santo V; Meli A; Moneti S; Psaro R; Scaffidi A; Sordelli L; Vizza F J Am Chem Soc; 2006 May; 128(21):7065-76. PubMed ID: 16719488 [TBL] [Abstract][Full Text] [Related]
3. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design. Madhavan N; Jones CW; Weck M Acc Chem Res; 2008 Sep; 41(9):1153-65. PubMed ID: 18793027 [TBL] [Abstract][Full Text] [Related]
4. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique. Zhu H; Liang C; Yan W; Overbury SH; Dai S J Phys Chem B; 2006 Jun; 110(22):10842-8. PubMed ID: 16771335 [TBL] [Abstract][Full Text] [Related]
5. Sustainable green catalysis by supported metal nanoparticles. Fukuoka A; Dhepe PL Chem Rec; 2009; 9(4):224-35. PubMed ID: 19701957 [TBL] [Abstract][Full Text] [Related]
6. Monitoring supported-nanocluster heterogeneous catalyst formation: product and kinetic evidence for a 2-step, nucleation and autocatalytic growth mechanism of Pt(0)n formation from H2PtCl6 on Al2O3 or TiO2. Mondloch JE; Yan X; Finke RG J Am Chem Soc; 2009 May; 131(18):6389-96. PubMed ID: 19379011 [TBL] [Abstract][Full Text] [Related]
7. Noncovalent anchoring of homogeneous catalysts to silica supports with well-defined binding sites. Chen R; Bronger RP; Kamer PC; van Leeuwen PW; Reek JN J Am Chem Soc; 2004 Nov; 126(44):14557-66. PubMed ID: 15521776 [TBL] [Abstract][Full Text] [Related]
9. Thermally reduced ruthenium nanoparticles as a highly active heterogeneous catalyst for hydrogenation of monoaromatics. Su F; Lv L; Lee FY; Liu T; Cooper AI; Zhao XS J Am Chem Soc; 2007 Nov; 129(46):14213-23. PubMed ID: 17973376 [TBL] [Abstract][Full Text] [Related]
10. Ordered mesoporous Pd/silica-carbon as a highly active heterogeneous catalyst for coupling reaction of chlorobenzene in aqueous media. Wan Y; Wang H; Zhao Q; Klingstedt M; Terasaki O; Zhao D J Am Chem Soc; 2009 Apr; 131(12):4541-50. PubMed ID: 19275234 [TBL] [Abstract][Full Text] [Related]
12. Silica nanoparticles grown and stabilized in organic nonalcoholic media. El Hawi N; Nayral C; Delpech F; Coppel Y; Cornejo A; Castel A; Chaudret B Langmuir; 2009 Jul; 25(13):7540-6. PubMed ID: 19496545 [TBL] [Abstract][Full Text] [Related]
13. Immobilization of molecular catalysts in supported ionic liquid phases. Van Doorslaer C; Wahlen J; Mertens P; Binnemans K; De Vos D Dalton Trans; 2010 Sep; 39(36):8377-90. PubMed ID: 20419187 [TBL] [Abstract][Full Text] [Related]
14. Metal nanoparticles or metal oxide nanoparticles, an efficient and promising family of novel heterogeneous catalysts in organic synthesis. Wang S; Wang Z; Zha Z Dalton Trans; 2009 Nov; (43):9363-73. PubMed ID: 19859587 [TBL] [Abstract][Full Text] [Related]
15. New Heterogeneous Rh-Containing Catalysts Immobilized on a Hybrid Organic-Inorganic Surface for Hydroformylation of Unsaturated Compounds. Gorbunov D; Safronova D; Kardasheva Y; Maximov A; Rosenberg E; Karakhanov E ACS Appl Mater Interfaces; 2018 Aug; 10(31):26566-26575. PubMed ID: 29979868 [TBL] [Abstract][Full Text] [Related]
16. Effect of supporting surface layers on catalytic activities of gold nanoparticles in CO oxidation. Yan W; Mahurin SM; Chen B; Overbury SH; Dai S J Phys Chem B; 2005 Aug; 109(32):15489-96. PubMed ID: 16852965 [TBL] [Abstract][Full Text] [Related]
17. Supported gold nanoparticles as catalysts for organic reactions. Corma A; Garcia H Chem Soc Rev; 2008 Sep; 37(9):2096-126. PubMed ID: 18762848 [TBL] [Abstract][Full Text] [Related]
18. Highly efficient colloidal cobalt- and rhodium-catalyzed hydrolysis of H3N.BH3 in air. Clark TJ; Whittell GR; Manners I Inorg Chem; 2007 Sep; 46(18):7522-7. PubMed ID: 17663545 [TBL] [Abstract][Full Text] [Related]
19. WO3 nanoparticles on MCM-48 as a highly selective and versatile heterogeneous catalyst for the oxidation of olefins, sulfides, and cyclic ketones. Koo DH; Kim M; Chang S Org Lett; 2005 Oct; 7(22):5015-8. PubMed ID: 16235946 [TBL] [Abstract][Full Text] [Related]
20. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Wang L; Zhang W; Wang S; Gao Z; Luo Z; Wang X; Zeng R; Li A; Li H; Wang M; Zheng X; Zhu J; Zhang W; Ma C; Si R; Zeng J Nat Commun; 2016 Dec; 7():14036. PubMed ID: 28004661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]