These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 1660877)
1. Purification and characterization of a third cytosolic component of the superoxide-generating NADPH oxidase of macrophages. Abo A; Pick E J Biol Chem; 1991 Dec; 266(35):23577-85. PubMed ID: 1660877 [TBL] [Abstract][Full Text] [Related]
2. The membrane-associated component of the amphiphile-activated, cytosol-dependent superoxide-forming NADPH oxidase of macrophages is identical to cytochrome b559. Knoller S; Shpungin S; Pick E J Biol Chem; 1991 Feb; 266(5):2795-804. PubMed ID: 1847135 [TBL] [Abstract][Full Text] [Related]
3. Role of the rac1 p21-GDP-dissociation inhibitor for rho heterodimer in the activation of the superoxide-forming NADPH oxidase of macrophages. Pick E; Gorzalczany Y; Engel S Eur J Biochem; 1993 Oct; 217(1):441-55. PubMed ID: 8223583 [TBL] [Abstract][Full Text] [Related]
4. Activation of the superoxide forming NADPH oxidase in a cell-free system by sodium dodecyl sulfate. Absolute lipid dependence of the solubilized enzyme. Shpungin S; Dotan I; Abo A; Pick E J Biol Chem; 1989 Jun; 264(16):9195-203. PubMed ID: 2542302 [TBL] [Abstract][Full Text] [Related]
5. Activation of the superoxide forming NADPH oxidase in a cell-free system by sodium dodecyl sulfate. Characterization of the membrane-associated component. Pick E; Bromberg Y; Shpungin S; Gadba R J Biol Chem; 1987 Dec; 262(34):16476-83. PubMed ID: 2824496 [TBL] [Abstract][Full Text] [Related]
6. Activation of the superoxide-forming NADPH oxidase of macrophages requires two cytosolic components--one of them is also present in certain nonphagocytic cells. Pick E; Kroizman T; Abo A J Immunol; 1989 Dec; 143(12):4180-7. PubMed ID: 2556480 [TBL] [Abstract][Full Text] [Related]
7. The cytosolic component p47(phox) is not a sine qua non participant in the activation of NADPH oxidase but is required for optimal superoxide production. Koshkin V; Lotan O; Pick E J Biol Chem; 1996 Nov; 271(48):30326-9. PubMed ID: 8939991 [TBL] [Abstract][Full Text] [Related]
8. Generation of superoxide by purified and relipidated cytochrome b559 in the absence of cytosolic activators. Koshkin V; Pick E FEBS Lett; 1993 Jul; 327(1):57-62. PubMed ID: 8392946 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the GTP-dependent activation of the superoxide-producing NADPH oxidase in a cell-free system of pig neutrophils. Yu L; Takeshige K; Nunoi H; Minakami S Biochim Biophys Acta; 1993 Jul; 1178(1):73-80. PubMed ID: 8392379 [TBL] [Abstract][Full Text] [Related]
10. Cell-free translocation of recombinant p47-phox, a component of the neutrophil NADPH oxidase: effects of guanosine 5'-O-(3-thiotriphosphate), diacylglycerol, and an anionic amphiphile. Tyagi SR; Neckelmann N; Uhlinger DJ; Burnham DN; Lambeth JD Biochemistry; 1992 Mar; 31(10):2765-74. PubMed ID: 1312346 [TBL] [Abstract][Full Text] [Related]
11. Certain lymphoid cells contain the membrane-associated component of the phagocyte-specific NADPH oxidase. Pick E; Gadba R J Immunol; 1988 Mar; 140(5):1611-7. PubMed ID: 2831270 [TBL] [Abstract][Full Text] [Related]
12. Nucleotide binding properties of cytosolic components required for expression of activity of the superoxide generating NADPH oxidase. Sha'ag D; Pick E Biochim Biophys Acta; 1990 Mar; 1037(3):405-12. PubMed ID: 2155658 [TBL] [Abstract][Full Text] [Related]
13. NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system. Clark RA; Leidal KG; Pearson DW; Nauseef WM J Biol Chem; 1987 Mar; 262(9):4065-74. PubMed ID: 3031060 [TBL] [Abstract][Full Text] [Related]
14. Macrophage-derived superoxide-generating NADPH oxidase in an amphiphile-activated, cell-free system; partial purification of the cytosolic component and evidence that it may contain the NADPH binding site. Sha'ag D; Pick E Biochim Biophys Acta; 1988 Jan; 952(2):213-9. PubMed ID: 2827778 [TBL] [Abstract][Full Text] [Related]
15. Activation of the superoxide-generating NADPH oxidase of macrophages by sodium dodecyl sulfate in a soluble cell-free system: evidence for involvement of a G protein. Aharoni I; Pick E J Leukoc Biol; 1990 Aug; 48(2):107-15. PubMed ID: 2164554 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of NADPH oxidase activation by 4-(2-aminoethyl)-benzenesulfonyl fluoride and related compounds. Diatchuk V; Lotan O; Koshkin V; Wikstroem P; Pick E J Biol Chem; 1997 May; 272(20):13292-301. PubMed ID: 9148950 [TBL] [Abstract][Full Text] [Related]
17. Reconstitution of superoxide-forming NADPH oxidase activity with cytochrome b558 purified from porcine neutrophils. Requirement of a membrane-bound flavin enzyme for reconstitution of activity. Miki T; Yoshida LS; Kakinuma K J Biol Chem; 1992 Sep; 267(26):18695-701. PubMed ID: 1326533 [TBL] [Abstract][Full Text] [Related]
18. Mapping of functional domains in the p22(phox) subunit of flavocytochrome b(559) participating in the assembly of the NADPH oxidase complex by "peptide walking". Dahan I; Issaeva I; Gorzalczany Y; Sigal N; Hirshberg M; Pick E J Biol Chem; 2002 Mar; 277(10):8421-32. PubMed ID: 11733522 [TBL] [Abstract][Full Text] [Related]
19. Electron transfer in the superoxide-generating NADPH oxidase complex reconstituted in vitro. Koshkin V; Lotan O; Pick E Biochim Biophys Acta; 1997 Apr; 1319(2-3):139-46. PubMed ID: 9131041 [TBL] [Abstract][Full Text] [Related]
20. Assembly of the neutrophil respiratory burst oxidase. Protein kinase C promotes cytoskeletal and membrane association of cytosolic oxidase components. Nauseef WM; Volpp BD; McCormick S; Leidal KG; Clark RA J Biol Chem; 1991 Mar; 266(9):5911-7. PubMed ID: 1848559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]