These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 16608866)

  • 1. The role of a zinc finger-containing glycine-rich RNA-binding protein during the cold adaptation process in Arabidopsis thaliana.
    Kim YO; Kang H
    Plant Cell Physiol; 2006 Jun; 47(6):793-8. PubMed ID: 16608866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana.
    Kim YO; Kim JS; Kang H
    Plant J; 2005 Jun; 42(6):890-900. PubMed ID: 15941401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions.
    Kim YO; Pan S; Jung CH; Kang H
    Plant Cell Physiol; 2007 Aug; 48(8):1170-81. PubMed ID: 17602187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions.
    Kim JY; Park SJ; Jang B; Jung CH; Ahn SJ; Goh CH; Cho K; Han O; Kang H
    Plant J; 2007 May; 50(3):439-51. PubMed ID: 17376161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of Arabidopsis zinc finger-containing glycine-rich RNA-binding proteins during cold adaptation.
    Kim WY; Kim JY; Jung HJ; Oh SH; Han YS; Kang H
    Plant Physiol Biochem; 2010; 48(10-11):866-72. PubMed ID: 20850334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The C-terminal zinc finger domain of Arabidopsis cold shock domain proteins is important for RNA chaperone activity during cold adaptation.
    Park SJ; Kwak KJ; Jung HJ; Lee HJ; Kang H
    Phytochemistry; 2010 Apr; 71(5-6):543-7. PubMed ID: 20060550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions.
    Park SJ; Kwak KJ; Oh TR; Kim YO; Kang H
    Plant Cell Physiol; 2009 Apr; 50(4):869-78. PubMed ID: 19258348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of glycine-rich RNA-binding proteins in Brassica napus under stress conditions.
    Kim MK; Jung HJ; Kim DH; Kang H
    Physiol Plant; 2012 Nov; 146(3):297-307. PubMed ID: 22462633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc finger-containing glycine-rich RNA-binding protein in Oryza sativa has an RNA chaperone activity under cold stress conditions.
    Kim JY; Kim WY; Kwak KJ; Oh SH; Han YS; Kang H
    Plant Cell Environ; 2010 May; 33(5):759-68. PubMed ID: 20088860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals.
    Sasaki K; Kim MH; Imai R
    Biochem Biophys Res Commun; 2007 Dec; 364(3):633-8. PubMed ID: 17963727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression of the CBF pathway and cell cycle-related genes in Arabidopsis accessions in response to chronic low-temperature exposure.
    Lee YP; Fleming AJ; Körner Ch; Meins F
    Plant Biol (Stuttg); 2009 May; 11(3):273-83. PubMed ID: 19470100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold shock domain proteins and glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli.
    Kim JS; Park SJ; Kwak KJ; Kim YO; Kim JY; Song J; Jang B; Jung CH; Kang H
    Nucleic Acids Res; 2007; 35(2):506-16. PubMed ID: 17169986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana.
    Fursova OV; Pogorelko GV; Tarasov VA
    Gene; 2009 Jan; 429(1-2):98-103. PubMed ID: 19026725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural genetic variation in acclimation capacity at sub-zero temperatures after cold acclimation at 4 degrees C in different Arabidopsis thaliana accessions.
    Le MQ; Engelsberger WR; Hincha DK
    Cryobiology; 2008 Oct; 57(2):104-12. PubMed ID: 18619434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation.
    Zhu J; Dong CH; Zhu JK
    Curr Opin Plant Biol; 2007 Jun; 10(3):290-5. PubMed ID: 17468037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-quality regulation of freezing tolerance in Arabidopsis thaliana.
    Franklin KA; Whitelam GC
    Nat Genet; 2007 Nov; 39(11):1410-3. PubMed ID: 17965713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thellungiella: an Arabidopsis-related model plant adapted to cold temperatures.
    Griffith M; Timonin M; Wong AC; Gray GR; Akhter SR; Saldanha M; Rogers MA; Weretilnyk EA; Moffatt B
    Plant Cell Environ; 2007 May; 30(5):529-38. PubMed ID: 17407531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of plant RNA-binding proteins in development, stress response and genome organization.
    Lorković ZJ
    Trends Plant Sci; 2009 Apr; 14(4):229-36. PubMed ID: 19285908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions.
    Kim JS; Kim KA; Oh TR; Park CM; Kang H
    Plant Cell Physiol; 2008 Oct; 49(10):1563-71. PubMed ID: 18725370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana.
    Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z
    Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.