BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

563 related articles for article (PubMed ID: 16609065)

  • 21. Mechanism of stepwise electron transfer in six-transmembrane epithelial antigen of the prostate (STEAP) 1 and 2.
    Chen K; Wang L; Shen J; Tsai AL; Zhou M; Wu G
    Elife; 2023 Nov; 12():. PubMed ID: 37983176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae.
    Martins LJ; Jensen LT; Simon JR; Keller GL; Winge DR
    J Biol Chem; 1998 Sep; 273(37):23716-21. PubMed ID: 9726978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure of the membrane proximal oxidoreductase domain of human Steap3, the dominant ferrireductase of the erythroid transferrin cycle.
    Sendamarai AK; Ohgami RS; Fleming MD; Lawrence CM
    Proc Natl Acad Sci U S A; 2008 May; 105(21):7410-5. PubMed ID: 18495927
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lysosomal iron recycling in mouse macrophages is dependent upon both LcytB and Steap3 reductases.
    Meng F; Fleming BA; Jia X; Rousek AA; Mulvey MA; Ward DM
    Blood Adv; 2022 Mar; 6(6):1692-1707. PubMed ID: 34982827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Copper repletion enhances apical iron uptake and transepithelial iron transport by Caco-2 cells.
    Han O; Wessling-Resnick M
    Am J Physiol Gastrointest Liver Physiol; 2002 Mar; 282(3):G527-33. PubMed ID: 11842003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Six-transmembrane epithelial antigen of the prostate (STEAP1 and STEAP2)-differentially expressed by murine and human mesenchymal stem cells.
    Vaghjiani RJ; Talma S; Murphy CL
    Tissue Eng Part A; 2009 Aug; 15(8):2073-83. PubMed ID: 19196137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multicopper oxidase-1 is required for iron homeostasis in Malpighian tubules of Helicoverpa armigera.
    Liu X; Sun C; Liu X; Yin X; Wang B; Du M; An S
    Sci Rep; 2015 Oct; 5():14784. PubMed ID: 26437857
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human STEAP3 maintains tumor growth under hypoferric condition.
    Isobe T; Baba E; Arita S; Komoda M; Tamura S; Shirakawa T; Ariyama H; Takaishi S; Kusaba H; Ueki T; Akashi K
    Exp Cell Res; 2011 Nov; 317(18):2582-91. PubMed ID: 21871451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Six-transmembrane epithelial antigen of the prostate-1 plays a role for in vivo tumor growth via intercellular communication.
    Yamamoto T; Tamura Y; Kobayashi J; Kamiguchi K; Hirohashi Y; Miyazaki A; Torigoe T; Asanuma H; Hiratsuka H; Sato N
    Exp Cell Res; 2013 Oct; 319(17):2617-26. PubMed ID: 23916873
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake.
    Askwith C; Eide D; Van Ho A; Bernard PS; Li L; Davis-Kaplan S; Sipe DM; Kaplan J
    Cell; 1994 Jan; 76(2):403-10. PubMed ID: 8293473
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox cycling in iron uptake, efflux, and trafficking.
    Kosman DJ
    J Biol Chem; 2010 Aug; 285(35):26729-26735. PubMed ID: 20522542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The
    Marckmann D; Trasnea PI; Schimpf J; Winterstein C; Andrei A; Schmollinger S; Blaby-Haas CE; Friedrich T; Daldal F; Koch HG
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21166-21175. PubMed ID: 31570589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative nutrition of iron and copper.
    Winzerling JJ; Law JH
    Annu Rev Nutr; 1997; 17():501-26. PubMed ID: 9240938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator.
    Georgatsou E; Mavrogiannis LA; Fragiadakis GS; Alexandraki D
    J Biol Chem; 1997 May; 272(21):13786-92. PubMed ID: 9153234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cryo-electron microscopy structure and potential enzymatic function of human six-transmembrane epithelial antigen of the prostate 1 (STEAP1).
    Oosterheert W; Gros P
    J Biol Chem; 2020 Jul; 295(28):9502-9512. PubMed ID: 32409586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Diversity of Cuproproteins and Copper Homeostasis Systems in Melioribacter roseus, a Facultatively Anaerobic Thermophilic Member of a New Phylum Ignavibacteriae].
    Karnachuk OV; Gavrilov SN; Avakyan MR; Podosokorskaya OA; Frank YA; Bonch-Osmolovskaya EA; Kublanov IB
    Mikrobiologiia; 2015; 84(2):165-74. PubMed ID: 26263622
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multicopper oxidases: modular structure, sequence space, and evolutionary relationships.
    Gräff M; Buchholz PCF; Le Roes-Hill M; Pleiss J
    Proteins; 2020 Oct; 88(10):1329-1339. PubMed ID: 32447824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copper and iron transport across the placenta: regulation and interactions.
    McArdle HJ; Andersen HS; Jones H; Gambling L
    J Neuroendocrinol; 2008 Apr; 20(4):427-31. PubMed ID: 18266949
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A ferrireductase fills the gap in the transferrin cycle.
    McKie AT
    Nat Genet; 2005 Nov; 37(11):1159-60. PubMed ID: 16254556
    [No Abstract]   [Full Text] [Related]  

  • 40. Iron metabolism in eukaryotes: Mars and Venus at it again.
    Kaplan J; O'Halloran TV
    Science; 1996 Mar; 271(5255):1510-2. PubMed ID: 8599104
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.