These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A multiscale approach for modeling the early stage growth of single and multiwall carbon nanotubes produced by a metal-catalyzed synthesis process. Elliott JA; Hamm M; Shibuta Y J Chem Phys; 2009 Jan; 130(3):034704. PubMed ID: 19173534 [TBL] [Abstract][Full Text] [Related]
6. Factors governing the growth mode of carbon nanotubes on carbon-based substrates. Kim KJ; Yu WR; Youk JH; Lee J Phys Chem Chem Phys; 2012 Oct; 14(40):14041-8. PubMed ID: 22990211 [TBL] [Abstract][Full Text] [Related]
7. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles. Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289 [TBL] [Abstract][Full Text] [Related]
8. Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes. Zhou LP; Ohta K; Kuroda K; Lei N; Matsuishi K; Gao L; Matsumoto T; Nakamura J J Phys Chem B; 2005 Mar; 109(10):4439-47. PubMed ID: 16851515 [TBL] [Abstract][Full Text] [Related]
9. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition. Jodin L; Dupuis AC; Rouvière E; Reiss P J Phys Chem B; 2006 Apr; 110(14):7328-33. PubMed ID: 16599506 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of carbon encapsulated magnetic nanoparticles with giant coercivity by a spray pyrolysis approach. Wang JN; Zhang L; Yu F; Sheng ZM J Phys Chem B; 2007 Mar; 111(8):2119-24. PubMed ID: 17269820 [TBL] [Abstract][Full Text] [Related]
13. Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. Steiner SA; Baumann TF; Bayer BC; Blume R; Worsley MA; MoberlyChan WJ; Shaw EL; Schlögl R; Hart AJ; Hofmann S; Wardle BL J Am Chem Soc; 2009 Sep; 131(34):12144-54. PubMed ID: 19663436 [TBL] [Abstract][Full Text] [Related]
14. Evidence for, and an understanding of, the initial nucleation of carbon nanotubes produced by a floating catalyst method. Ren W; Li F; Cheng HM J Phys Chem B; 2006 Aug; 110(34):16941-6. PubMed ID: 16927985 [TBL] [Abstract][Full Text] [Related]
15. Particle-wire-tube mechanism for carbon nanotube evolution. Du G; Feng S; Zhao J; Song C; Bai S; Zhu Z J Am Chem Soc; 2006 Dec; 128(48):15405-14. PubMed ID: 17132007 [TBL] [Abstract][Full Text] [Related]
17. Abrasion as a catalyst deposition technique for carbon nanotube growth. Alvarez NT; Pint CL; Hauge RH; Tour JM J Am Chem Soc; 2009 Oct; 131(41):15041-8. PubMed ID: 19764728 [TBL] [Abstract][Full Text] [Related]
18. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes. Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and magnetic properties of Ni nanospheres encapsulated in a fullerene-like carbon. Pol SV; Pol VG; Frydman A; Churilov GN; Gedanken A J Phys Chem B; 2005 May; 109(19):9495-8. PubMed ID: 16852141 [TBL] [Abstract][Full Text] [Related]
20. Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles. Correa-Duarte MA; Grzelczak M; Salgueiriño-Maceira V; Giersig M; Liz-Marzan LM; Farle M; Sierazdki K; Diaz R J Phys Chem B; 2005 Oct; 109(41):19060-3. PubMed ID: 16853457 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]