These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 16610887)

  • 1. Interpretation of the experimental data on the reduction reaction of NO by CO on rhodium by Monte Carlo simulations and by solving the kinetic equations of the reaction mechanism.
    Cortés J; Valencia E
    J Phys Chem B; 2006 Apr; 110(15):7887-97. PubMed ID: 16610887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does phenomenological kinetics provide an adequate description of heterogeneous catalytic reactions?
    Temel B; Meskine H; Reuter K; Scheffler M; Metiu H
    J Chem Phys; 2007 May; 126(20):204711. PubMed ID: 17552793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Monte Carlo simulation of the NO + CO reaction on Rh(111).
    Avalos LA; Bustos V; Uñac R; Zaera F; Zgrablich G
    J Phys Chem B; 2006 Dec; 110(49):24964-71. PubMed ID: 17149918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular beam measurements and Monte Carlo simulations of the kinetics of N2O decomposition on Rh(111) single-crystal surfaces.
    Omar Uñac R; Bustos V; Wilson J; Zgrablich G; Zaera F
    J Chem Phys; 2006 Aug; 125(7):074705. PubMed ID: 16942362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding time distributions as an approach to protein folding kinetics.
    Chekmarev SF; Krivov SV; Karplus M
    J Phys Chem B; 2005 Mar; 109(11):5312-30. PubMed ID: 16863198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic oscillations in the NO+CO reaction on the Pt(100) surface: an alternative reaction mechanism.
    Alas SJ; Cordero S; Kornhauser I; Zgrablich G
    J Chem Phys; 2005 Apr; 122(14):144705. PubMed ID: 15847551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of oscillations and pattern formation in the NO + CO reaction on Pt(100) surfaces through dynamic Monte Carlo simulation: toward a realistic model.
    Alas SJ; Zgrablich G
    J Phys Chem B; 2006 May; 110(19):9499-510. PubMed ID: 16686496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic modeling of methyl butanoate in shock tube.
    Huynh LK; Lin KC; Violi A
    J Phys Chem A; 2008 Dec; 112(51):13470-80. PubMed ID: 19035670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of catalytic reactions on nanoclusters.
    Murzin DY
    Langmuir; 2010 Apr; 26(7):4854-9. PubMed ID: 20017508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The multiple depletion curves method provides accurate estimates of intrinsic clearance (CLint), maximum velocity of the metabolic reaction (Vmax), and Michaelis constant (Km): accuracy and robustness evaluated through experimental data and Monte Carlo simulations.
    Sjögren E; Lennernäs H; Andersson TB; Gråsjö J; Bredberg U
    Drug Metab Dispos; 2009 Jan; 37(1):47-58. PubMed ID: 18824525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO oxidation reaction on Pt(111) studied by the dynamic Monte Carlo method including lateral interactions of adsorbates.
    Nagasaka M; Kondoh H; Nakai I; Ohta T
    J Chem Phys; 2007 Jan; 126(4):044704. PubMed ID: 17286496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic study of the "surface explosion" phenomenon in the NO+CO reaction on Pt(100) through dynamic Monte Carlo simulation.
    Alas SJ; Vicente L
    J Chem Phys; 2008 Apr; 128(13):134705. PubMed ID: 18397092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adlayer inhomogeneity without lateral interactions: rationalizing correlation effects in CO oxidation at RuO2(110) with first-principles kinetic Monte Carlo.
    Matera S; Meskine H; Reuter K
    J Chem Phys; 2011 Feb; 134(6):064713. PubMed ID: 21322727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic simulation of catalytic surface reactions in the fast diffusion limit.
    Mastny EA; Haseltine EL; Rawlings JB
    J Chem Phys; 2006 Nov; 125(19):194715. PubMed ID: 17129158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple rate-determining steps for nonideal and fractal kinetics.
    Vlad MO; Popa VT; Segal E; Ross J
    J Phys Chem B; 2005 Feb; 109(6):2455-60. PubMed ID: 16851241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ab initio Rice-Ramsperger-Kassel-Marcus/master equation investigation of SiH(4) decomposition kinetics using a kinetic Monte Carlo approach.
    Barbato A; Seghi C; Cavallotti C
    J Chem Phys; 2009 Feb; 130(7):074108. PubMed ID: 19239285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Percolation transition in supercritical water: a Monte Carlo simulation study.
    Pártay LB; Jedlovszky P; Brovchenko I; Oleinikova A
    J Phys Chem B; 2007 Jul; 111(26):7603-9. PubMed ID: 17567064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental measurements and Monte Carlo simulations for dosimetric evaluations of intrafraction motion for gated and ungated intensity modulated arc therapy deliveries.
    Oliver M; Gladwish A; Staruch R; Craig J; Gaede S; Chen J; Wong E
    Phys Med Biol; 2008 Nov; 53(22):6419-36. PubMed ID: 18941277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic Monte Carlo studies of hydrogen abstraction from graphite.
    Cuppen HM; Hornekaer L
    J Chem Phys; 2008 May; 128(17):174707. PubMed ID: 18465936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulations for configuring and testing an analytical proton dose-calculation algorithm.
    Newhauser W; Fontenot J; Zheng Y; Polf J; Titt U; Koch N; Zhang X; Mohan R
    Phys Med Biol; 2007 Aug; 52(15):4569-84. PubMed ID: 17634651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.