These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
68 related articles for article (PubMed ID: 16610948)
1. Gene expression profile of empirically delineated classes of unexplained chronic fatigue. Carmel L; Efroni S; White PD; Aslakson E; Vollmer-Conna U; Rajeevan MS Pharmacogenomics; 2006 Apr; 7(3):375-86. PubMed ID: 16610948 [TBL] [Abstract][Full Text] [Related]
2. Polymorphisms in genes regulating the HPA axis associated with empirically delineated classes of unexplained chronic fatigue. Smith AK; White PD; Aslakson E; Vollmer-Conna U; Rajeevan MS Pharmacogenomics; 2006 Apr; 7(3):387-94. PubMed ID: 16610949 [TBL] [Abstract][Full Text] [Related]
3. The validity of an empirical delineation of heterogeneity in chronic unexplained fatigue. Aslakson E; Vollmer-Conna U; White PD Pharmacogenomics; 2006 Apr; 7(3):365-73. PubMed ID: 16610947 [TBL] [Abstract][Full Text] [Related]
4. An empirical delineation of the heterogeneity of chronic unexplained fatigue in women. Vollmer-Conna U; Aslakson E; White PD Pharmacogenomics; 2006 Apr; 7(3):355-64. PubMed ID: 16610946 [TBL] [Abstract][Full Text] [Related]
5. Gene expression profile exploration of a large dataset on chronic fatigue syndrome. Fang H; Xie Q; Boneva R; Fostel J; Perkins R; Tong W Pharmacogenomics; 2006 Apr; 7(3):429-40. PubMed ID: 16610953 [TBL] [Abstract][Full Text] [Related]
6. Exploration of the gene expression correlates of chronic unexplained fatigue using factor analysis. Fostel J; Boneva R; Lloyd A Pharmacogenomics; 2006 Apr; 7(3):441-54. PubMed ID: 16610954 [TBL] [Abstract][Full Text] [Related]
7. Gene expression correlates of unexplained fatigue. Whistler T; Taylor R; Craddock RC; Broderick G; Klimas N; Unger ER Pharmacogenomics; 2006 Apr; 7(3):395-405. PubMed ID: 16610950 [TBL] [Abstract][Full Text] [Related]
8. Linear data mining the Wichita clinical matrix suggests sleep and allostatic load involvement in chronic fatigue syndrome. Gurbaxani BM; Jones JF; Goertzel BN; Maloney EM Pharmacogenomics; 2006 Apr; 7(3):455-65. PubMed ID: 16610955 [TBL] [Abstract][Full Text] [Related]
9. Identifying illness parameters in fatiguing syndromes using classical projection methods. Broderick G; Craddock RC; Whistler T; Taylor R; Klimas N; Unger ER Pharmacogenomics; 2006 Apr; 7(3):407-19. PubMed ID: 16610951 [TBL] [Abstract][Full Text] [Related]
10. The challenge of integrating disparate high-content data: epidemiological, clinical and laboratory data collected during an in-hospital study of chronic fatigue syndrome. Vernon SD; Reeves WC Pharmacogenomics; 2006 Apr; 7(3):345-54. PubMed ID: 16610945 [TBL] [Abstract][Full Text] [Related]
11. Seven genomic subtypes of chronic fatigue syndrome/myalgic encephalomyelitis: a detailed analysis of gene networks and clinical phenotypes. Kerr JR; Burke B; Petty R; Gough J; Fear D; Mattey DL; Axford JS; Dalgleish AG; Nutt DJ J Clin Pathol; 2008 Jun; 61(6):730-9. PubMed ID: 18057078 [TBL] [Abstract][Full Text] [Related]
12. A simple implementation of a normal mixture approach to differential gene expression in multiclass microarrays. McLachlan GJ; Bean RW; Jones LB Bioinformatics; 2006 Jul; 22(13):1608-15. PubMed ID: 16632494 [TBL] [Abstract][Full Text] [Related]
13. Many accurate small-discriminatory feature subsets exist in microarray transcript data: biomarker discovery. Grate LR BMC Bioinformatics; 2005 Apr; 6():97. PubMed ID: 15826317 [TBL] [Abstract][Full Text] [Related]
14. Peripheral blood gene expression in postinfective fatigue syndrome following from three different triggering infections. Galbraith S; Cameron B; Li H; Lau D; Vollmer-Conna U; Lloyd AR J Infect Dis; 2011 Nov; 204(10):1632-40. PubMed ID: 21964398 [TBL] [Abstract][Full Text] [Related]
15. Partial least squares dimension reduction for microarray gene expression data with a censored response. Nguyen DV Math Biosci; 2005 Jan; 193(1):119-37. PubMed ID: 15681279 [TBL] [Abstract][Full Text] [Related]
16. [Identification and application of marker genes for differential diagnosis of chronic fatigue syndrome]. Kawai T; Rokutan K Nihon Rinsho; 2007 Jun; 65(6):1029-33. PubMed ID: 17561693 [TBL] [Abstract][Full Text] [Related]
17. Graph-based consensus clustering for class discovery from gene expression data. Yu Z; Wong HS; Wang H Bioinformatics; 2007 Nov; 23(21):2888-96. PubMed ID: 17872912 [TBL] [Abstract][Full Text] [Related]
18. Iterative class discovery and feature selection using Minimal Spanning Trees. Varma S; Simon R BMC Bioinformatics; 2004 Sep; 5():126. PubMed ID: 15355552 [TBL] [Abstract][Full Text] [Related]
19. New gene selection method for multiclass tumor classification by class centroid. Shen Q; Shi WM; Kong W J Biomed Inform; 2009 Feb; 42(1):59-65. PubMed ID: 18835752 [TBL] [Abstract][Full Text] [Related]
20. Multiclass cancer classification by support vector machines with class-wise optimized genes and probability estimates. Anand A; Suganthan PN J Theor Biol; 2009 Aug; 259(3):533-40. PubMed ID: 19406131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]