BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16610953)

  • 1. Gene expression profile exploration of a large dataset on chronic fatigue syndrome.
    Fang H; Xie Q; Boneva R; Fostel J; Perkins R; Tong W
    Pharmacogenomics; 2006 Apr; 7(3):429-40. PubMed ID: 16610953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploration of statistical dependence between illness parameters using the entropy correlation coefficient.
    Craddock RC; Taylor R; Broderick G; Whistler T; Klimas N; Unger ER
    Pharmacogenomics; 2006 Apr; 7(3):421-8. PubMed ID: 16610952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploration of the gene expression correlates of chronic unexplained fatigue using factor analysis.
    Fostel J; Boneva R; Lloyd A
    Pharmacogenomics; 2006 Apr; 7(3):441-54. PubMed ID: 16610954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear data mining the Wichita clinical matrix suggests sleep and allostatic load involvement in chronic fatigue syndrome.
    Gurbaxani BM; Jones JF; Goertzel BN; Maloney EM
    Pharmacogenomics; 2006 Apr; 7(3):455-65. PubMed ID: 16610955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying illness parameters in fatiguing syndromes using classical projection methods.
    Broderick G; Craddock RC; Whistler T; Taylor R; Klimas N; Unger ER
    Pharmacogenomics; 2006 Apr; 7(3):407-19. PubMed ID: 16610951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The challenge of integrating disparate high-content data: epidemiological, clinical and laboratory data collected during an in-hospital study of chronic fatigue syndrome.
    Vernon SD; Reeves WC
    Pharmacogenomics; 2006 Apr; 7(3):345-54. PubMed ID: 16610945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene expression correlates of unexplained fatigue.
    Whistler T; Taylor R; Craddock RC; Broderick G; Klimas N; Unger ER
    Pharmacogenomics; 2006 Apr; 7(3):395-405. PubMed ID: 16610950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seven genomic subtypes of chronic fatigue syndrome/myalgic encephalomyelitis: a detailed analysis of gene networks and clinical phenotypes.
    Kerr JR; Burke B; Petty R; Gough J; Fear D; Mattey DL; Axford JS; Dalgleish AG; Nutt DJ
    J Clin Pathol; 2008 Jun; 61(6):730-9. PubMed ID: 18057078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Identification and application of marker genes for differential diagnosis of chronic fatigue syndrome].
    Kawai T; Rokutan K
    Nihon Rinsho; 2007 Jun; 65(6):1029-33. PubMed ID: 17561693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucocorticoid receptor polymorphisms and haplotypes associated with chronic fatigue syndrome.
    Rajeevan MS; Smith AK; Dimulescu I; Unger ER; Vernon SD; Heim C; Reeves WC
    Genes Brain Behav; 2007 Mar; 6(2):167-76. PubMed ID: 16740143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early adverse experience and risk for chronic fatigue syndrome: results from a population-based study.
    Heim C; Wagner D; Maloney E; Papanicolaou DA; Solomon L; Jones JF; Unger ER; Reeves WC
    Arch Gen Psychiatry; 2006 Nov; 63(11):1258-66. PubMed ID: 17088506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic evaluation of the serotonergic system in chronic fatigue syndrome.
    Smith AK; Dimulescu I; Falkenberg VR; Narasimhan S; Heim C; Vernon SD; Rajeevan MS
    Psychoneuroendocrinology; 2008 Feb; 33(2):188-97. PubMed ID: 18079067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allostatic load is associated with symptoms in chronic fatigue syndrome patients.
    Goertzel BN; Pennachin C; de Souza Coelho L; Maloney EM; Jones JF; Gurbaxani B
    Pharmacogenomics; 2006 Apr; 7(3):485-94. PubMed ID: 16610958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of single-nucleotide polymorphisms (SNPs) to distinguish gene expression subtypes of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME).
    Shimosako N; Kerr JR
    J Clin Pathol; 2014 Dec; 67(12):1078-83. PubMed ID: 25240059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small scale transcript expression profile of Human first trimester placental villi analyzed by a custom-tailored cDNA array.
    Khan MA; Kar M; Mittal S; Kumar S; Bharagava VL; Sengupta J; Ghoshi D
    Indian J Physiol Pharmacol; 2010; 54(3):235-54. PubMed ID: 21409862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factor analysis of symptoms among subjects with unexplained chronic fatigue: what can we learn about chronic fatigue syndrome?
    Nisenbaum R; Reyes M; Unger ER; Reeves WC
    J Psychosom Res; 2004 Feb; 56(2):171-8. PubMed ID: 15016574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.
    Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ
    BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association of peripheral inflammatory markers with chronic fatigue in a population-based sample.
    Raison CL; Lin JM; Reeves WC
    Brain Behav Immun; 2009 Mar; 23(3):327-37. PubMed ID: 19111923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial intelligence based discovery of the association between depression and chronic fatigue syndrome.
    Zhang F; Wu C; Jia C; Gao K; Wang J; Zhao H; Wang W; Chen J
    J Affect Disord; 2019 May; 250():380-390. PubMed ID: 30877861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic and proteomic analyses in bone tumor cells: Deciphering parathyroid hormone-related protein regulation of the cell cycle and apoptosis.
    Mak IW; Turcotte RE; Ghert M
    J Bone Miner Res; 2012 Sep; 27(9):1976-91. PubMed ID: 22508574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.