BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 16611408)

  • 21. Utilization of microarray platforms in clinical practice: an insight on the preparation and amplification of nucleic acids from frozen and fixed tissues.
    Al-Mulla F
    Methods Mol Biol; 2007; 382():115-36. PubMed ID: 18220228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large fragment Bst DNA polymerase for whole genome amplification of DNA from formalin-fixed paraffin-embedded tissues.
    Aviel-Ronen S; Qi Zhu C; Coe BP; Liu N; Watson SK; Lam WL; Tsao MS
    BMC Genomics; 2006 Dec; 7():312. PubMed ID: 17156491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of techniques using amplified nucleic acid probes for gene expression profiling.
    Saghizadeh M; Brown DJ; Tajbakhsh J; Chen Z; Kenney MC; Farber DB; Nelson SF
    Biomol Eng; 2003 Mar; 20(3):97-106. PubMed ID: 12684071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptome analysis of single cells.
    Morris J; Singh JM; Eberwine JH
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21540826
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Balanced-PCR amplification allows unbiased identification of genomic copy changes in minute cell and tissue samples.
    Wang G; Brennan C; Rook M; Wolfe JL; Leo C; Chin L; Pan H; Liu WH; Price B; Makrigiorgos GM
    Nucleic Acids Res; 2004 May; 32(9):e76. PubMed ID: 15155823
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trypanosoma cruzi specific mRNA amplification by in vitro transcription improves parasite transcriptomics in host-parasite RNA mixtures.
    Kessler RL; Pavoni DP; Krieger MA; Probst CM
    BMC Genomics; 2017 Oct; 18(1):793. PubMed ID: 29037144
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative evaluation of linear and exponential amplification techniques for expression profiling at the single-cell level.
    Subkhankulova T; Livesey FJ
    Genome Biol; 2006; 7(3):R18. PubMed ID: 16542485
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-cell DNA and RNA sequencing of circulating tumor cells.
    Kojima M; Harada T; Fukazawa T; Kurihara S; Saeki I; Takahashi S; Hiyama E
    Sci Rep; 2021 Nov; 11(1):22864. PubMed ID: 34819539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methodological approach to study the genomic profile of the human breast.
    Balogh GA; Heulings R; Mailo D; Wang R; Li YS; Hardy R; Russo J
    Int J Oncol; 2007 Aug; 31(2):253-60. PubMed ID: 17611680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chum-RNA allows preparation of a high-quality cDNA library from a single-cell quantity of mRNA without PCR amplification.
    Tougan T; Okuzaki D; Nojima H
    Nucleic Acids Res; 2008 Sep; 36(15):e92. PubMed ID: 18603591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased DNA microarray hybridization specificity using sscDNA targets.
    Barker CS; Griffin C; Dolganov GM; Hanspers K; Yang JY; Erle DJ
    BMC Genomics; 2005 Apr; 6():57. PubMed ID: 15847692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-time PCR analysis of RNA extracted from formalin-fixed and paraffin-embeded tissues: effects of the fixation on outcome reliability.
    Castiglione F; Rossi Degl'Innocenti D; Taddei A; Garbini F; Buccoliero AM; Raspollini MR; Pepi M; Paglierani M; Asirelli G; Freschi G; Bechi P; Taddei GL
    Appl Immunohistochem Mol Morphol; 2007 Sep; 15(3):338-42. PubMed ID: 17721281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fetal gut laser microdissection in combination with RNA preamplification enables epithelial-specific transcriptional profiling.
    Hemmerling J; Jansen J; Müller M; Haller D
    J Immunol Methods; 2015 Jan; 416():189-92. PubMed ID: 25462537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amplification biases: possible differences among deviating gene expressions.
    Degrelle SA; Hennequet-Antier C; Chiapello H; Piot-Kaminski K; Piumi F; Robin S; Renard JP; Hue I
    BMC Genomics; 2008 Jan; 9():46. PubMed ID: 18226214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of DNA copy number changes in microdissected serous ovarian cancer tissue using a cDNA microarray platform.
    Tsuda H; Birrer MJ; Ito YM; Ohashi Y; Lin M; Lee C; Wong WH; Rao PH; Lau CC; Berkowitz RS; Wong KK; Mok SC
    Cancer Genet Cytogenet; 2004 Dec; 155(2):97-107. PubMed ID: 15571795
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amplification of whole tumor genomes and gene-by-gene mapping of genomic aberrations from limited sources of fresh-frozen and paraffin-embedded DNA.
    Bredel M; Bredel C; Juric D; Kim Y; Vogel H; Harsh GR; Recht LD; Pollack JR; Sikic BI
    J Mol Diagn; 2005 May; 7(2):171-82. PubMed ID: 15858140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oligonucleotide microarray analysis of aminoallyl-labeled cDNA targets from linear RNA amplification.
    Kaposi-Novak P; Lee JS; Mikaelyan A; Patel V; Thorgeirsson SS
    Biotechniques; 2004 Oct; 37(4):580, 582-6, 588. PubMed ID: 15517970
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression profiling of archival renal tumors by quantitative PCR to validate prognostic markers.
    Glenn ST; Jones CA; Liang P; Kaushik D; Gross KW; Kim HL
    Biotechniques; 2007 Nov; 43(5):639-40, 642-3, 647. PubMed ID: 18072593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative gene expression analysis in microdissected archival formalin-fixed and paraffin-embedded tumor tissue.
    Specht K; Richter T; Müller U; Walch A; Werner M; Höfler H
    Am J Pathol; 2001 Feb; 158(2):419-29. PubMed ID: 11159180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene expression profiling of archived dried blood spot samples from the Danish Neonatal Screening Biobank.
    Grauholm J; Khoo SK; Nickolov RZ; Poulsen JB; Bækvad-Hansen M; Hansen CS; Hougaard DM; Hollegaard MV
    Mol Genet Metab; 2015 Nov; 116(3):119-24. PubMed ID: 26212339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.