These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 16611641)
1. Probes of the catalytic site of cysteine dioxygenase. Chai SC; Bruyere JR; Maroney MJ J Biol Chem; 2006 Jun; 281(23):15774-9. PubMed ID: 16611641 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic implications. Pierce BS; Gardner JD; Bailey LJ; Brunold TC; Fox BG Biochemistry; 2007 Jul; 46(29):8569-78. PubMed ID: 17602574 [TBL] [Abstract][Full Text] [Related]
3. Involvement of the Cys-Tyr cofactor on iron binding in the active site of human cysteine dioxygenase. Arjune S; Schwarz G; Belaidi AA Amino Acids; 2015 Jan; 47(1):55-63. PubMed ID: 25261132 [TBL] [Abstract][Full Text] [Related]
4. Second-sphere interactions between the C93-Y157 cross-link and the substrate-bound Fe site influence the O₂ coupling efficiency in mouse cysteine dioxygenase. Li W; Blaesi EJ; Pecore MD; Crowell JK; Pierce BS Biochemistry; 2013 Dec; 52(51):9104-19. PubMed ID: 24279989 [TBL] [Abstract][Full Text] [Related]
6. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs. Driggers CM; Hartman SJ; Karplus PA Protein Sci; 2015 Jan; 24(1):154-61. PubMed ID: 25307852 [TBL] [Abstract][Full Text] [Related]
7. Spectroscopic and computational studies of reversible O Fischer AA; Lindeman SV; Fiedler AT Dalton Trans; 2017 Oct; 46(39):13229-13241. PubMed ID: 28686274 [TBL] [Abstract][Full Text] [Related]
8. Cyanide replaces substrate in obligate-ordered addition of nitric oxide to the non-heme mononuclear iron AvMDO active site. York NJ; Lockart MM; Schmittou AN; Pierce BS J Biol Inorg Chem; 2023 Apr; 28(3):285-299. PubMed ID: 36809458 [TBL] [Abstract][Full Text] [Related]
9. Spectroscopic investigation of iron(III) cysteamine dioxygenase in the presence of substrate (analogs): implications for the nature of substrate-bound reaction intermediates. Fernandez RL; Juntunen ND; Fox BG; Brunold TC J Biol Inorg Chem; 2021 Dec; 26(8):947-955. PubMed ID: 34580769 [TBL] [Abstract][Full Text] [Related]
10. Cysteine dioxygenase structures from pH4 to 9: consistent cys-persulfenate formation at intermediate pH and a Cys-bound enzyme at higher pH. Driggers CM; Cooley RB; Sankaran B; Hirschberger LL; Stipanuk MH; Karplus PA J Mol Biol; 2013 Sep; 425(17):3121-36. PubMed ID: 23747973 [TBL] [Abstract][Full Text] [Related]
11. Differences in the Second Coordination Sphere Tailor the Substrate Specificity and Reactivity of Thiol Dioxygenases. Fernandez RL; Juntunen ND; Brunold TC Acc Chem Res; 2022 Sep; 55(17):2480-2490. PubMed ID: 35994511 [TBL] [Abstract][Full Text] [Related]
12. The 3-His Metal Coordination Site Promotes the Coupling of Oxygen Activation to Cysteine Oxidation in Cysteine Dioxygenase. Forbes DL; Meneely KM; Chilton AS; Lamb AL; Ellis HR Biochemistry; 2020 Jun; 59(21):2022-2031. PubMed ID: 32368901 [TBL] [Abstract][Full Text] [Related]
13. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases? de Visser SP; Straganz GD J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799 [TBL] [Abstract][Full Text] [Related]
14. Single turnover of substrate-bound ferric cysteine dioxygenase with superoxide anion: enzymatic reactivation, product formation, and a transient intermediate. Crawford JA; Li W; Pierce BS Biochemistry; 2011 Nov; 50(47):10241-53. PubMed ID: 21992268 [TBL] [Abstract][Full Text] [Related]
15. Steady-state substrate specificity and O₂-coupling efficiency of mouse cysteine dioxygenase. Li W; Pierce BS Arch Biochem Biophys; 2015 Jan; 565():49-56. PubMed ID: 25444857 [TBL] [Abstract][Full Text] [Related]
16. Preparation, crystallization and X-ray diffraction analysis to 1.5 A resolution of rat cysteine dioxygenase, a mononuclear iron enzyme responsible for cysteine thiol oxidation. Simmons CR; Hao Q; Stipanuk MH Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Nov; 61(Pt 11):1013-6. PubMed ID: 16511222 [TBL] [Abstract][Full Text] [Related]
17. Spectroscopic analysis of the mammalian enzyme cysteine dioxygenase. Miller JR; Brunold TC Methods Enzymol; 2023; 682():101-135. PubMed ID: 36948699 [TBL] [Abstract][Full Text] [Related]
18. Shifting redox states of the iron center partitions CDO between crosslink formation or cysteine oxidation. Njeri CW; Ellis HR Arch Biochem Biophys; 2014 Sep; 558():61-9. PubMed ID: 24929188 [TBL] [Abstract][Full Text] [Related]
19. Oxidative uncoupling in cysteine dioxygenase is gated by a proton-sensitive intermediate. Crowell JK; Li W; Pierce BS Biochemistry; 2014 Dec; 53(48):7541-8. PubMed ID: 25387045 [TBL] [Abstract][Full Text] [Related]
20. Addition of an external electron donor to in vitro assays of cysteine dioxygenase precludes the need for exogenous iron. Imsand EM; Njeri CW; Ellis HR Arch Biochem Biophys; 2012 May; 521(1-2):10-7. PubMed ID: 22433531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]