These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 16612379)

  • 1. Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway.
    Spengler D; van Roermund HL; Drury MR; Ottolini L; Mason PR; Davies GR
    Nature; 2006 Apr; 440(7086):913-7. PubMed ID: 16612379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States.
    Lee CT; Yin Q; Rudnick RL; Jacobsen SB
    Nature; 2001 May; 411(6833):69-73. PubMed ID: 11333978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depth-dependent peridotite-melt interaction and the origin of variable silica in the cratonic mantle.
    Tomlinson EL; Kamber BS
    Nat Commun; 2021 Feb; 12(1):1082. PubMed ID: 33597517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermochemical lithosphere differentiation and the origin of cratonic mantle.
    Capitanio FA; Nebel O; Cawood PA
    Nature; 2020 Dec; 588(7836):89-94. PubMed ID: 33268867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plume-driven recratonization of deep continental lithospheric mantle.
    Liu J; Pearson DG; Wang LH; Mather KA; Kjarsgaard BA; Schaeffer AJ; Irvine GJ; Kopylova MG; Armstrong JP
    Nature; 2021 Apr; 592(7856):732-736. PubMed ID: 33911271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep continental roots and cratons.
    Pearson DG; Scott JM; Liu J; Schaeffer A; Wang LH; van Hunen J; Szilas K; Chacko T; Kelemen PB
    Nature; 2021 Aug; 596(7871):199-210. PubMed ID: 34381239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Archaean ultra-depleted komatiites formed by hydrous melting of cratonic mantle.
    Wilson AH; Shirey SB; Carlson RW
    Nature; 2003 Jun; 423(6942):858-61. PubMed ID: 12815428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Displaced cratonic mantle concentrates deep carbon during continental rifting.
    Muirhead JD; Fischer TP; Oliva SJ; Laizer A; van Wijk J; Currie CA; Lee H; Judd EJ; Kazimoto E; Sano Y; Takahata N; Tiberi C; Foley SF; Dufek J; Reiss MC; Ebinger CJ
    Nature; 2020 Jun; 582(7810):67-72. PubMed ID: 32494080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fossilized Melts in Mantle Wedge Peridotites.
    Naemura K; Hirajima T; Svojtka M; Shimizu I; Iizuka T
    Sci Rep; 2018 Jul; 8(1):10116. PubMed ID: 29973610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The continental lithospheric mantle: characteristics and significance as a mantle reservoir.
    Pearson DG; Nowell GM
    Philos Trans A Math Phys Eng Sci; 2002 Nov; 360(1800):2383-410. PubMed ID: 12460473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Olivine water contents in the continental lithosphere and the longevity of cratons.
    Peslier AH; Woodland AB; Bell DR; Lazarov M
    Nature; 2010 Sep; 467(7311):78-81. PubMed ID: 20811455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites.
    Hellebrand E; Snow JE; Dick HJ; Hofmann AW
    Nature; 2001 Apr; 410(6829):677-81. PubMed ID: 11287951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The possible subduction of continental material to depths greater than 200 km.
    Ye K; Cong B; Ye D
    Nature; 2000 Oct; 407(6805):734-6. PubMed ID: 11048717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Building cratonic keels in Precambrian plate tectonics.
    Perchuk AL; Gerya TV; Zakharov VS; Griffin WL
    Nature; 2020 Oct; 586(7829):395-401. PubMed ID: 33057224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for ancient fractional melting, cryptic refertilization and rapid exhumation of Tethyan mantle (Civrari Ophiolite, NW Italy).
    McCarthy A; Müntener O
    Contrib Mineral Petrol; 2019; 174(8):69. PubMed ID: 31423015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep, ultra-hot-melting residues as cradles of mantle diamond.
    Walsh C; Kamber BS; Tomlinson EL
    Nature; 2023 Mar; 615(7952):450-454. PubMed ID: 36922607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melting of the Earth's lithospheric mantle inferred from protactinium-thorium-uranium isotopic data.
    Asmerom Y; Cheng H; Thomas R; Hirschmann M; Edwards RL
    Nature; 2000 Jul; 406(6793):293-6. PubMed ID: 10917528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges.
    Yogodzinski GM; Lees JM; Churikova TG; Dorendorf F; Wöerner G; Volynets ON
    Nature; 2001 Jan; 409(6819):500-4. PubMed ID: 11206543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of early continental crust by partial melting of eclogite.
    Rapp RP; Shimizu N; Norman MD
    Nature; 2003 Oct; 425(6958):605-9. PubMed ID: 14534583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The long-term strength of Europe and its implications for plate-forming processes.
    Pérez-Gussinyé M; Watts AB
    Nature; 2005 Jul; 436(7049):381-4. PubMed ID: 16034416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.