These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16612606)

  • 1. Kinetic modelling of phenol co-oxidation using horseradish peroxidase.
    Carvalho RH; Lemos F; Lemos MA; Vojinović V; Fonseca LP; Cabral JM
    Bioprocess Biosyst Eng; 2006 Jul; 29(2):99-108. PubMed ID: 16612606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study.
    Zazo JA; Casas JA; Mohedano AF; Rodriguez JJ
    Water Res; 2009 Sep; 43(16):4063-9. PubMed ID: 19616818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Fenton oxidation to cosmetic wastewaters treatment.
    Bautista P; Mohedano AF; Gilarranz MA; Casas JA; Rodriguez JJ
    J Hazard Mater; 2007 May; 143(1-2):128-34. PubMed ID: 17034937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron(3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation.
    Zelmanov G; Semiat R
    Water Res; 2008 Jan; 42(1-2):492-8. PubMed ID: 17714754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic modeling of electrochemical degradation of phenol in a three-dimension electrode process.
    Wang L; Fu J; Qiao Q; Zhao Y
    J Hazard Mater; 2007 Jun; 144(1-2):118-25. PubMed ID: 17097227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerically simulated pH-induced reactivation of catalytic activity of horseradish peroxidase.
    Popovic-Bijelić A; Bijelić G; Kolar-Anić L; Vukojević V
    Ann N Y Acad Sci; 2005 Jun; 1048():457-60. PubMed ID: 16154977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic and wet oxidation of phenol catalyzed by non-promoted and potassium-promoted manganese/cerium oxide.
    Santiago AF; Sousa JF; Guedes RC; Jerônimo CE; Benachour M
    J Hazard Mater; 2006 Nov; 138(2):325-30. PubMed ID: 17008007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Co-oxidation of phenols and 4-aminoantipyrene catalyzed by microperoxidase and their complexes with proteins].
    Metelitsa DI; Arapova GS; Vidzhinaĭte RA; Demcheva MV; Litvinchuk AV; Razumas VI
    Biokhimiia; 1994 Sep; 59(9):1285-98. PubMed ID: 7819408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics study on catalytic wet air oxidation of phenol by several metal oxide catalysts.
    Wan JF; Feng YJ; Cai WM; Yang SX; Sun XJ
    J Environ Sci (China); 2004; 16(4):556-8. PubMed ID: 15495955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal oxidation: application to the treatment of different cutting fluid wastes.
    Sánchez-Oneto J; Portela JR; Nebot E; Martínez de la Ossa E
    J Hazard Mater; 2007 Jun; 144(3):639-44. PubMed ID: 17363160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic modeling of electro-Fenton reaction in aqueous solution.
    Liu H; Li XZ; Leng YJ; Wang C
    Water Res; 2007 Mar; 41(5):1161-7. PubMed ID: 17258788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic model of laccase-catalyzed oxidation of aqueous phenol.
    Kurniawati S; Nicell JA
    Biotechnol Bioeng; 2005 Jul; 91(1):114-23. PubMed ID: 15889399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of TiO2 and aeration on the kinetics of electrochemical oxidation of phenol in packed bed reactor.
    Wang L; Zhao Y; Fu J
    J Hazard Mater; 2008 Dec; 160(2-3):608-13. PubMed ID: 18434001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive kinetic model of laccase-catalyzed oxidation of aqueous phenol.
    Kurniawati S; Nicell JA
    Biotechnol Prog; 2009; 25(3):763-73. PubMed ID: 19496113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Box-Benkhen experimental design for the optimization of the electrocatalytic treatment of wastewaters with high concentrations of phenol and organic matter.
    GilPavas E; Betancourt A; Angulo M; Dobrosz-Gómez I; Gómez-García MA
    Water Sci Technol; 2009; 60(11):2809-18. PubMed ID: 19934502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remediation of phenol, lignin and paper effluents by advanced oxidative processes.
    Peralta-Zamora P; Wypych F; Carneiro LM; Vaz SR
    Environ Technol; 2004 Dec; 25(12):1331-9. PubMed ID: 15691193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of a catecholate chelator as a redox agent in Fenton-based reactions on degradation of lignin-model substrates and on COD removal from effluent of an ECF kraft pulp mill.
    Arantes V; Milagres AM
    J Hazard Mater; 2007 Mar; 141(1):273-9. PubMed ID: 16905243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic and kinetic study of phenol degradation by a non-catalytic wet air oxidation process.
    Lefèvre S; Boutin O; Ferrasse JH; Malleret L; Faucherand R; Viand A
    Chemosphere; 2011 Aug; 84(9):1208-15. PubMed ID: 21700312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced Fenton processing of aqueous phenol solutions: a continuous system study including sonication effects.
    Namkung KC; Burgess AE; Bremner DH; Staines H
    Ultrason Sonochem; 2008 Mar; 15(3):171-6. PubMed ID: 17482498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Horseradish peroxidase immobilized on aluminium-pillared inter-layered clay for the catalytic oxidation of phenolic wastewater.
    Cheng J; Ming Yu S; Zuo P
    Water Res; 2006 Jan; 40(2):283-90. PubMed ID: 16384593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.