These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 16613485)
41. Spectral versatility of single reef coral fluorescent proteins detected by spectrally-resolved single molecule spectroscopy. Blum C; Meixner AJ; Subramaniam V Chemphyschem; 2008 Feb; 9(2):310-5. PubMed ID: 18189254 [TBL] [Abstract][Full Text] [Related]
42. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Ai HW; Shaner NC; Cheng Z; Tsien RY; Campbell RE Biochemistry; 2007 May; 46(20):5904-10. PubMed ID: 17444659 [TBL] [Abstract][Full Text] [Related]
43. Microspectroscopic fluorescence analysis with prism-based imaging spectrometers: review and current studies. Hanley QS; Murray PI; Forde TS Cytometry A; 2006 Aug; 69(8):759-66. PubMed ID: 16680677 [TBL] [Abstract][Full Text] [Related]
44. [Fluorescent proteins: physical-chemical properties and application in cell biology]. Stepanenko OV; Verkhusha VV; Kuznetsova IM; Turoverov KK Tsitologiia; 2007; 49(5):395-420. PubMed ID: 17654827 [TBL] [Abstract][Full Text] [Related]
45. New insights into the photophysics of DsRed by multiparameter spectroscopy on single proteins. Schleifenbaum F; Blum C; Elgass K; Subramaniam V; Meixner AJ J Phys Chem B; 2008 Jun; 112(25):7669-74. PubMed ID: 18528973 [TBL] [Abstract][Full Text] [Related]
46. Chromophore aspartate oxidation-decarboxylation in the green-to-red conversion of a fluorescent protein from Zoanthus sp. 2. Pakhomov AA; Martynov VI Biochemistry; 2007 Oct; 46(41):11528-35. PubMed ID: 17892303 [TBL] [Abstract][Full Text] [Related]
47. Exploring tissue morphodynamics using the photoconvertible Kaede protein in amphioxus embryos. Meister L; Escriva H; Bertrand S PLoS One; 2022; 17(9):e0275193. PubMed ID: 36166455 [TBL] [Abstract][Full Text] [Related]
48. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Ando R; Hama H; Yamamoto-Hino M; Mizuno H; Miyawaki A Proc Natl Acad Sci U S A; 2002 Oct; 99(20):12651-6. PubMed ID: 12271129 [TBL] [Abstract][Full Text] [Related]
49. Fluorescence and bioluminescence procedures for functional proteomics. Prinz A; Reither G; Diskar M; Schultz C Proteomics; 2008 Mar; 8(6):1179-96. PubMed ID: 18283669 [TBL] [Abstract][Full Text] [Related]
50. An improved mRFP1 adds red to bimolecular fluorescence complementation. Jach G; Pesch M; Richter K; Frings S; Uhrig JF Nat Methods; 2006 Aug; 3(8):597-600. PubMed ID: 16862132 [TBL] [Abstract][Full Text] [Related]
51. Direct measurement of protein dynamics inside cells using a rationally designed photoconvertible protein. Matsuda T; Miyawaki A; Nagai T Nat Methods; 2008 Apr; 5(4):339-45. PubMed ID: 18345008 [TBL] [Abstract][Full Text] [Related]
52. FRET-Mediated Long-Range Wavelength Transformation by Photoconvertible Fluorescent Proteins as an Efficient Mechanism to Generate Orange-Red Light in Symbiotic Deep Water Corals. Bollati E; Plimmer D; D'Angelo C; Wiedenmann J Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28677653 [TBL] [Abstract][Full Text] [Related]
53. Monitoring protein interactions in the living cell through the fluorescence decays of the cyan fluorescent protein. Grailhe R; Merola F; Ridard J; Couvignou S; Le Poupon C; Changeux JP; Laguitton-Pasquier H Chemphyschem; 2006 Jul; 7(7):1442-54. PubMed ID: 16739159 [TBL] [Abstract][Full Text] [Related]
54. Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair. Albertazzi L; Arosio D; Marchetti L; Ricci F; Beltram F Photochem Photobiol; 2009; 85(1):287-97. PubMed ID: 18764891 [TBL] [Abstract][Full Text] [Related]
55. Engineering of a monomeric fluorescent protein AsGFP499 and its applications in a dual translocation and transcription assay. Tasdemir A; Khan F; Jowitt TA; Iuzzolino L; Lohmer S; Corazza S; Schmidt TJ Protein Eng Des Sel; 2008 Oct; 21(10):613-22. PubMed ID: 18676975 [TBL] [Abstract][Full Text] [Related]
56. Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mizuno H; Mal TK; Tong KI; Ando R; Furuta T; Ikura M; Miyawaki A Mol Cell; 2003 Oct; 12(4):1051-8. PubMed ID: 14580354 [TBL] [Abstract][Full Text] [Related]
57. A green to red photoconvertible protein as an analyzing tool for early vertebrate development. Wacker SA; Oswald F; Wiedenmann J; Knöchel W Dev Dyn; 2007 Feb; 236(2):473-80. PubMed ID: 16964606 [TBL] [Abstract][Full Text] [Related]
58. Monomerization of far-red fluorescent proteins. Wannier TM; Gillespie SK; Hutchins N; McIsaac RS; Wu SY; Shen Y; Campbell RE; Brown KS; Mayo SL Proc Natl Acad Sci U S A; 2018 Nov; 115(48):E11294-E11301. PubMed ID: 30425172 [No Abstract] [Full Text] [Related]
59. Sticky caveats in an otherwise glowing report: oligomerizing fluorescent proteins and their use in cell biology. Zacharias DA Sci STKE; 2002 May; 2002(131):pe23. PubMed ID: 11997581 [TBL] [Abstract][Full Text] [Related]
60. Analysis of G protein betagamma dimer formation in live cells using multicolor bimolecular fluorescence complementation demonstrates preferences of beta1 for particular gamma subunits. Mervine SM; Yost EA; Sabo JL; Hynes TR; Berlot CH Mol Pharmacol; 2006 Jul; 70(1):194-205. PubMed ID: 16641313 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]