These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 16613628)

  • 21. Extended-cavity, tunable, GHz-repetition-rate femtosecond optical parametric oscillator pumped at 76 MHz.
    Kokabee O; Esteban-Martin A; Ebrahim-Zadeh M
    Opt Express; 2009 Aug; 17(18):15635-40. PubMed ID: 19724562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fourth-order coherent Raman spectroscopy in a time domain: applications to buried interfaces.
    Nomoto T; Onishi H
    Phys Chem Chem Phys; 2007 Nov; 9(41):5515-21. PubMed ID: 17957307
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonlinear optical microscopy at wavelengths exceeding 1.4 microm using a synchronously pumped femtosecond-pulsed optical parametric oscillator.
    McConnell G
    Phys Med Biol; 2007 Feb; 52(3):717-24. PubMed ID: 17228116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enthalpic and entropic stages in alpha-helical peptide unfolding, from laser T-jump/UV Raman spectroscopy.
    Balakrishnan G; Hu Y; Bender GM; Getahun Z; DeGrado WF; Spiro TG
    J Am Chem Soc; 2007 Oct; 129(42):12801-8. PubMed ID: 17910449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-Resolved Temperature-Jump Infrared Spectroscopy at a High Repetition Rate.
    Greetham GM; Clark IP; Young B; Fritsch R; Minnes L; Hunt NT; Towrie M
    Appl Spectrosc; 2020 Jun; 74(6):720-727. PubMed ID: 32114769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The detection of laser-induced structural change of MnO2 using in situ Raman spectroscopy combined with self-modeling curve resolution technique.
    Widjaja E; Sampanthar JT
    Anal Chim Acta; 2007 Mar; 585(2):241-5. PubMed ID: 17386671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics.
    Kubelka J
    Photochem Photobiol Sci; 2009 Apr; 8(4):499-512. PubMed ID: 19337664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. All-solid-state optical parametric oscillator for the visible.
    Cui Y; Dunn MH; Norrie CJ; Sibbett W; Sinclair BD; Tang Y; Terry JA
    Opt Lett; 1992 May; 17(9):646-8. PubMed ID: 19794585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Studies on dynamics of protein folding/unfolding by using the laser-induced temperature jump technique].
    Mizutani Y; Yamamoto K; Kitagawa T
    Tanpakushitsu Kakusan Koso; 2002 May; 47(6):670-6. PubMed ID: 11995333
    [No Abstract]   [Full Text] [Related]  

  • 30. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity.
    Li D; Li Y; Li H; Wu X; Yu Q; Weng Y
    Rev Sci Instrum; 2015 May; 86(5):053105. PubMed ID: 26026512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Linearly moving low-volume spectroelectrochemical cell for microliter-scale surface-enhanced resonance Raman spectroscopy of heme proteins.
    Bonifacio A; Millo D; Gooijer C; Boegschoten R; van der Zwan G
    Anal Chem; 2004 Mar; 76(5):1529-31. PubMed ID: 14987114
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of deep blue diode laser to resonance Raman spectroscopy of hemoproteins.
    Oda K; Kuroiwa S; Ogura T
    Appl Spectrosc; 2004 May; 58(5):636-8. PubMed ID: 15165342
    [No Abstract]   [Full Text] [Related]  

  • 33. Efficient conversion of a 1.064 μm Nd:YAG laser to the eye-safe region using a diamond Raman laser.
    Sabella A; Piper JA; Mildren RP
    Opt Express; 2011 Nov; 19(23):23554-60. PubMed ID: 22109234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fiber-format stimulated-Raman-scattering microscopy from a single laser oscillator.
    Gambetta A; Kumar V; Grancini G; Polli D; Ramponi R; Cerullo G; Marangoni M
    Opt Lett; 2010 Jan; 35(2):226-8. PubMed ID: 20081976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-microm band.
    Nampoothiri AV; Ratanavis A; Campbell N; Rudolph W
    Opt Express; 2010 Feb; 18(3):1946-51. PubMed ID: 20174023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tunable IR laser source with optical parametric oscillators in series.
    Raffy J; Debuisschert T; Pocholle JP; Papuchon M
    Appl Opt; 1994 Feb; 33(6):985-7. PubMed ID: 20862102
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel micro-Raman setup with tunable laser excitation for time-efficient resonance Raman microscopy and imaging.
    Stürzl N; Lebedkin S; Klumpp S; Hennrich F; Kappes MM
    Anal Chem; 2013 May; 85(9):4554-9. PubMed ID: 23521587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF.
    Wang YY; Couny F; Light PS; Mangan BJ; Benabid F
    Opt Lett; 2010 Apr; 35(8):1127-9. PubMed ID: 20410941
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of a 10.3-microm pulsed DFB quantum cascade laser.
    Lytkine A; Manne J; Jäger W; Tulip J
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Apr; 63(5):947-51. PubMed ID: 16503190
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Femtosecond stimulated Raman spectrometer in the 320-520nm range.
    Pontecorvo E; Kapetanaki SM; Badioli M; Brida D; Marangoni M; Cerullo G; Scopigno T
    Opt Express; 2011 Jan; 19(2):1107-12. PubMed ID: 21263650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.