These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 16613630)

  • 1. Classification of chemical and biological warfare agent simulants by surface-enhanced Raman spectroscopy and multivariate statistical techniques.
    Pearman WF; Fountain AW
    Appl Spectrosc; 2006 Apr; 60(4):356-65. PubMed ID: 16613630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacillus spore classification via surface-enhanced Raman spectroscopy and principal component analysis.
    Guicheteau J; Argue L; Emge D; Hyre A; Jacobson M; Christesen S
    Appl Spectrosc; 2008 Mar; 62(3):267-72. PubMed ID: 18339232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of individual genotypes of measles virus using surface enhanced Raman spectroscopy.
    Hoang V; Tripp RA; Rota P; Dluhy RA
    Analyst; 2010 Dec; 135(12):3103-9. PubMed ID: 20838669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Part III: Surface-enhanced Raman scattering of amino acids and their homodipeptide monolayers deposited onto colloidal gold surface.
    Podstawka E; Ozaki Y; Proniewicz LM
    Appl Spectrosc; 2005 Dec; 59(12):1516-26. PubMed ID: 16390592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Standoff detection of chemical and biological threats using laser-induced breakdown spectroscopy.
    Gottfried JL; De Lucia FC; Munson CA; Miziolek AW
    Appl Spectrosc; 2008 Apr; 62(4):353-63. PubMed ID: 18416891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD
    J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-particle aerosol mass spectrometry for the detection and identification of chemical warfare agent simulants.
    Martin AN; Farquar GR; Frank M; Gard EE; Fergenson DP
    Anal Chem; 2007 Aug; 79(16):6368-75. PubMed ID: 17630721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Lipitor counterfeits: a comparison of NIR and Raman spectroscopy in combination with chemometrics.
    de Peinder P; Vredenbregt MJ; Visser T; de Kaste D
    J Pharm Biomed Anal; 2008 Aug; 47(4-5):688-94. PubMed ID: 18387769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer.
    Hu G; Xiong W; Luo H; Shi H; Li Z; Shen J; Fang X; Xu B; Zhang J
    Appl Spectrosc; 2018 Jan; 72(1):151-158. PubMed ID: 28627233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination of biological and chemical threat simulants in residue mixtures on multiple substrates.
    Gottfried JL
    Anal Bioanal Chem; 2011 Jul; 400(10):3289-301. PubMed ID: 21331489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Array of Love-wave sensors based on quartz/Novolac to detect CWA simulants.
    Matatagui D; Fontecha J; Fernández MJ; Aleixandre M; Gràcia I; Cané C; Horrillo MC
    Talanta; 2011 Sep; 85(3):1442-7. PubMed ID: 21807207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multilayer structures of self-assembled gold nanoparticles as a unique SERS and SEIRA substrate.
    Baia M; Toderas F; Baia L; Maniu D; Astilean S
    Chemphyschem; 2009 May; 10(7):1106-11. PubMed ID: 19322798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resolution of intermediate adsorbate structures in the potential-dependent self-assembly of n-hexanethiolate on Silver by in situ surface-enhanced Raman spectroscopy.
    Uibel RH; Harris JM
    Appl Spectrosc; 2004 Aug; 58(8):934-44. PubMed ID: 18070386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of surface-enhanced Raman spectroscopy for the rapid identification of Escherichia coli and Listeria monocytogenes cultures on silver colloidal nanoparticles.
    Liu Y; Chen YR; Nou X; Chao K
    Appl Spectrosc; 2007 Aug; 61(8):824-31. PubMed ID: 17716400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure.
    Hossain MK; Huang GG; Kaneko T; Ozaki Y
    Phys Chem Chem Phys; 2009 Sep; 11(34):7484-90. PubMed ID: 19690723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy.
    Ruan C; Eres G; Wang W; Zhang Z; Gu B
    Langmuir; 2007 May; 23(10):5757-60. PubMed ID: 17425344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Waveguide-enhanced Raman spectroscopy of trace chemical warfare agent simulants.
    Tyndall NF; Stievater TH; Kozak DA; Koo K; McGill RA; Pruessner MW; Rabinovich WS; Holmstrom SA
    Opt Lett; 2018 Oct; 43(19):4803-4806. PubMed ID: 30272744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative solid-state analysis of three solid forms of ranitidine hydrochloride in ternary mixtures using Raman spectroscopy and X-ray powder diffraction.
    Chieng N; Rehder S; Saville D; Rades T; Aaltonen J
    J Pharm Biomed Anal; 2009 Jan; 49(1):18-25. PubMed ID: 19081220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.