These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
667 related articles for article (PubMed ID: 1661385)
1. K+ and Ca2+ channel blockers may enhance or depress sympathetic transmitter release via a Ca(2+)-dependent mechanism "upstream" of the release site. Stjärne L; Stjärne E; Msghina M; Bao JX Neuroscience; 1991; 44(3):673-92. PubMed ID: 1661385 [TBL] [Abstract][Full Text] [Related]
2. K+ and Ca2+ channel blocking agents increase or decrease stimulus-evoked but not spontaneous quantal transmitter release in sympathetic nerve terminals. Stjärne L; Msghina M; Stjärne E Acta Physiol Scand; 1990 Feb; 138(2):235-7. PubMed ID: 2156406 [No Abstract] [Full Text] [Related]
3. Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells. Zhang L; Bonev AD; Nelson MT; Mawe GM Am J Physiol; 1993 Dec; 265(6 Pt 1):C1552-61. PubMed ID: 7506489 [TBL] [Abstract][Full Text] [Related]
4. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex. Chen W; Zhang JJ; Hu GY; Wu CP Neuroscience; 1996 Jul; 73(1):57-68. PubMed ID: 8783229 [TBL] [Abstract][Full Text] [Related]
5. Effects of Ca2+ and K+ channel blockers on nerve impulses recorded from guinea-pig postganglionic sympathetic nerve terminals. Brock JA; Cunnane TC J Physiol; 1995 Dec; 489 ( Pt 2)(Pt 2):389-402. PubMed ID: 8847635 [TBL] [Abstract][Full Text] [Related]
6. Voltage-gated ionic currents in smooth muscle cells of guinea pig proximal colon. Vogalis F; Lang RJ; Bywater RA; Taylor GS Am J Physiol; 1993 Mar; 264(3 Pt 1):C527-36. PubMed ID: 8384782 [TBL] [Abstract][Full Text] [Related]
7. Some pharmacological applications of an extracellular recording method to study secretion of a sympathetic co-transmitter, presumably ATP. Stjärne L; Stjärne E Acta Physiol Scand; 1989 Mar; 135(3):227-39. PubMed ID: 2564719 [TBL] [Abstract][Full Text] [Related]
8. Voltage-gated calcium and potassium currents in megakaryocytes dissociated from guinea-pig bone marrow. Kawa K J Physiol; 1990 Dec; 431():187-206. PubMed ID: 1966049 [TBL] [Abstract][Full Text] [Related]
9. Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current. Augustine GJ J Physiol; 1990 Dec; 431():343-64. PubMed ID: 1983120 [TBL] [Abstract][Full Text] [Related]
10. Ionic dependencies of tetrodotoxin-resistant action potentials in trigeminal root ganglion neurons. Hsiung GR; Puil E Neuroscience; 1990; 37(1):115-25. PubMed ID: 2243589 [TBL] [Abstract][Full Text] [Related]
12. Effects of ions and ionic channel activators or blockers on release of alpha-MSH from perifused rat hypothalamic slices. Bunel DT; Delbende C; Blasquez C; Jégou S; Vaudry H Brain Res Mol Brain Res; 1990 Jul; 8(2):167-75. PubMed ID: 1698247 [TBL] [Abstract][Full Text] [Related]
13. Ionic currents in single smooth muscle cells of the canine renal artery. Gelband CH; Hume JR Circ Res; 1992 Oct; 71(4):745-58. PubMed ID: 1381293 [TBL] [Abstract][Full Text] [Related]
14. Voltage-dependent calcium and potassium channels in Schwann cells cultured from dorsal root ganglia of the mouse. Amédée T; Ellie E; Dupouy B; Vincent JD J Physiol; 1991 Sep; 441():35-56. PubMed ID: 1667796 [TBL] [Abstract][Full Text] [Related]
15. Modulation of bursts and high-threshold calcium spikes in neurons of rat auditory thalamus. Tennigkeit F; Schwarz DW; Puil E Neuroscience; 1998 Apr; 83(4):1063-73. PubMed ID: 9502246 [TBL] [Abstract][Full Text] [Related]
16. A calcium-dependent component of the action potential in sympathetic nerve terminals in rat tail artery. Astrand P; Stjärne L Pflugers Arch; 1991 Mar; 418(1-2):102-8. PubMed ID: 2041716 [TBL] [Abstract][Full Text] [Related]
17. [K+ and Ca++ currents in hair cells isolated from the semicircular canals of the frog]. Masetto S; Russo G; Taglietti V; Prigioni I Boll Soc Ital Biol Sper; 1991 May; 67(5):493-500. PubMed ID: 1666831 [TBL] [Abstract][Full Text] [Related]
18. Regulation of glucagon release in mouse -cells by KATP channels and inactivation of TTX-sensitive Na+ channels. Göpel SO; Kanno T; Barg S; Weng XG; Gromada J; Rorsman P J Physiol; 2000 Nov; 528(Pt 3):509-20. PubMed ID: 11060128 [TBL] [Abstract][Full Text] [Related]