These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 16614225)

  • 1. Conformational switches modulate protein interactions in peptide antibiotic synthetases.
    Koglin A; Mofid MR; Löhr F; Schäfer B; Rogov VV; Blum MM; Mittag T; Marahiel MA; Bernhard F; Dötsch V
    Science; 2006 Apr; 312(5771):273-6. PubMed ID: 16614225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein.
    Eberini I; Guerini Rocco A; Ientile AR; Baptista AM; Gianazza E; Tomaselli S; Molinari H; Ragona L
    Proteins; 2008 Jun; 71(4):1889-98. PubMed ID: 18175325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular impact of covalent modifications on nonribosomal peptide synthetase carrier protein communication.
    Goodrich AC; Meyers DJ; Frueh DP
    J Biol Chem; 2017 Jun; 292(24):10002-10013. PubMed ID: 28455448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the termination module of a nonribosomal peptide synthetase.
    Tanovic A; Samel SA; Essen LO; Marahiel MA
    Science; 2008 Aug; 321(5889):659-63. PubMed ID: 18583577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification, priming, and catalytic acylation of carrier protein domains in the polyketide synthase and nonribosomal peptidyl synthetase modules of the HMWP1 subunit of yersiniabactin synthetase.
    Suo Z; Tseng CC; Walsh CT
    Proc Natl Acad Sci U S A; 2001 Jan; 98(1):99-104. PubMed ID: 11134531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of two distinct conformations of holo-non-ribosomal peptide synthetases.
    Drake EJ; Miller BR; Shi C; Tarrasch JT; Sundlov JA; Allen CL; Skiniotis G; Aldrich CC; Gulick AM
    Nature; 2016 Jan; 529(7585):235-8. PubMed ID: 26762461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and functional insights into a peptide bond-forming bidomain from a nonribosomal peptide synthetase.
    Samel SA; Schoenafinger G; Knappe TA; Marahiel MA; Essen LO
    Structure; 2007 Jul; 15(7):781-92. PubMed ID: 17637339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of peptidyl carrier protein and acyl carrier protein synthase unveils residues involved in protein-protein recognition.
    Finking R; Mofid MR; Marahiel MA
    Biochemistry; 2004 Jul; 43(28):8946-56. PubMed ID: 15248752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical evidence for conformational changes in the cross-talk between adenylation and peptidyl-carrier protein domains of nonribosomal peptide synthetases.
    Zettler J; Mootz HD
    FEBS J; 2010 Mar; 277(5):1159-71. PubMed ID: 20121951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure and backbone dynamics of the holo form of the frenolicin acyl carrier protein.
    Li Q; Khosla C; Puglisi JD; Liu CW
    Biochemistry; 2003 Apr; 42(16):4648-57. PubMed ID: 12705828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases.
    Schwarzer D; Mootz HD; Linne U; Marahiel MA
    Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14083-8. PubMed ID: 12384573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of D-alanyl-lipoteichoic acid: the tertiary structure of apo-D-alanyl carrier protein.
    Volkman BF; Zhang Q; Debabov DV; Rivera E; Kresheck GC; Neuhaus FC
    Biochemistry; 2001 Jul; 40(27):7964-72. PubMed ID: 11434765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR.
    Tang C; Schwieters CD; Clore GM
    Nature; 2007 Oct; 449(7165):1078-82. PubMed ID: 17960247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apo adenylate kinase encodes its holo form: a principal component and varimax analysis.
    Cukier RI
    J Phys Chem B; 2009 Feb; 113(6):1662-72. PubMed ID: 19159290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in backbone dynamics of two homologous bacterial albumin-binding modules: implications for binding specificity and bacterial adaptation.
    Johansson MU; Nilsson H; Evenäs J; Forsén S; Drakenberg T; Björck L; Wikström M
    J Mol Biol; 2002 Mar; 316(5):1083-99. PubMed ID: 11884146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utility of epimerization domains for the redesign of nonribosomal peptide synthetases.
    Stein DB; Linne U; Marahiel MA
    FEBS J; 2005 Sep; 272(17):4506-20. PubMed ID: 16128819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thioesterase domain of the fengycin biosynthesis cluster: a structural base for the macrocyclization of a non-ribosomal lipopeptide.
    Samel SA; Wagner B; Marahiel MA; Essen LO
    J Mol Biol; 2006 Jun; 359(4):876-89. PubMed ID: 16697411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR studies of 4-19F-phenylalanine-labeled intestinal fatty acid binding protein: evidence for conformational heterogeneity in the native state.
    Li H; Frieden C
    Biochemistry; 2005 Feb; 44(7):2369-77. PubMed ID: 15709749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isothermal unfolding studies on the apo and holo forms of Plasmodium falciparum acyl carrier protein. Role of the 4'-phosphopantetheine group in the stability of the holo form of Plasmodium falciparum acyl carrier protein.
    Modak R; Sinha S; Surolia N
    FEBS J; 2007 Jul; 274(13):3313-26. PubMed ID: 17555524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Posttranslational modification of myxobacterial carrier protein domains in Pseudomonas sp. by an intrinsic phosphopantetheinyl transferase.
    Gross F; Gottschalk D; Müller R
    Appl Microbiol Biotechnol; 2005 Jul; 68(1):66-74. PubMed ID: 15635461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.