BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 16614312)

  • 21. Activation of the Ca(2+)/calcineurin/NFAT2 pathway controls smooth muscle cell differentiation.
    Larrieu D; Thiébaud P; Duplàa C; Sibon I; Thézé N; Lamazière JM
    Exp Cell Res; 2005 Oct; 310(1):166-75. PubMed ID: 16129432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MCAT elements and the TEF-1 family of transcription factors in muscle development and disease.
    Yoshida T
    Arterioscler Thromb Vasc Biol; 2008 Jan; 28(1):8-17. PubMed ID: 17962623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium microdomains and gene expression in neurons and skeletal muscle cells.
    Carrasco MA; Hidalgo C
    Cell Calcium; 2006; 40(5-6):575-83. PubMed ID: 17034850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitogenic modulation of Ca2+ -activated K+ channels in proliferating A7r5 vascular smooth muscle cells.
    Si H; Grgic I; Heyken WT; Maier T; Hoyer J; Reusch HP; Köhler R
    Br J Pharmacol; 2006 Aug; 148(7):909-17. PubMed ID: 16770324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a 94-bp GC-rich element in the smooth muscle myosin heavy-chain promoter controlling vascular smooth muscle cell-specific gene expression.
    Deindl E; Middeler G; Müller OJ; Selbert S; Schlenke P; Marienfeld U; Thirion C; Katus HA; Franz WM
    Cell Biochem Biophys; 2006; 45(3):279-88. PubMed ID: 16845174
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ca2+ signaling, TRP channels, and endothelial permeability.
    Tiruppathi C; Ahmmed GU; Vogel SM; Malik AB
    Microcirculation; 2006 Dec; 13(8):693-708. PubMed ID: 17085428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of smooth muscle cell and pericyte differentiation in the rat retina in vivo.
    Hughes S; Chan-Ling T
    Invest Ophthalmol Vis Sci; 2004 Aug; 45(8):2795-806. PubMed ID: 15277506
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Abrogation of mitochondrial transcription in smooth muscle cells impairs smooth muscle contractility and vascular tone.
    Jawien J; Bian Z; Sheikine Y; Olofsson PS; Pang Y; Edholm T; Dou Y; Metzger D; Hellström PM; Feil R; Hansson GK
    J Physiol Pharmacol; 2008 Jun; 59(2):239-52. PubMed ID: 18622043
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracellular Ca²⁺ signalling and phenotype of vascular smooth muscle cells.
    Matchkov VV; Kudryavtseva O; Aalkjaer C
    Basic Clin Pharmacol Toxicol; 2012 Jan; 110(1):42-8. PubMed ID: 21999706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Excitation-transcription coupling: signaling by ion channels to the nucleus.
    Dolmetsch R
    Sci STKE; 2003 Jan; 2003(166):PE4. PubMed ID: 12538881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The mechanisms in NO-dependent regulation of electrical and mechanical activity in smooth muscles].
    Kovalev IV; Baskakov MB; Kapilevich LV; Medvedev MA
    Usp Fiziol Nauk; 2004; 35(3):20-36. PubMed ID: 15455551
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development.
    Hao H; Gabbiani G; Bochaton-Piallat ML
    Arterioscler Thromb Vasc Biol; 2003 Sep; 23(9):1510-20. PubMed ID: 12907463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A molecular complex of Ca
    Suzuki Y; Ozawa T; Kurata T; Nakajima N; Zamponi GW; Giles WR; Imaizumi Y; Yamamura H
    Proc Natl Acad Sci U S A; 2022 Apr; 119(16):e2117435119. PubMed ID: 35412911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of vascular smooth muscle cell phenotypic modulation at the aortic branch in atherogenesis.
    Yutani C; Fujita H; Takaichi S; Yamamoto A
    Front Med Biol Eng; 1993; 5(2):143-6. PubMed ID: 8241031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ca2+ control of transcription: can we extrapolate signaling cascades from neurons to vascular smooth muscle cells?
    Isenberg G
    Circ Res; 2004 May; 94(10):1276-8. PubMed ID: 15166114
    [No Abstract]   [Full Text] [Related]  

  • 36. Targeting altered calcium physiology in the heart: translational approaches to excitation, contraction, and transcription.
    Seidler T; Hasenfuss G; Maier LS
    Physiology (Bethesda); 2007 Oct; 22():328-34. PubMed ID: 17928546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium as a versatile second messenger in the control of gene expression.
    Hardingham GE; Bading H
    Microsc Res Tech; 1999 Sep; 46(6):348-55. PubMed ID: 10504212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arteriolar myogenic signalling mechanisms: Implications for local vascular function.
    Hill MA; Davis MJ; Meininger GA; Potocnik SJ; Murphy TV
    Clin Hemorheol Microcirc; 2006; 34(1-2):67-79. PubMed ID: 16543619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expressional regulation of smooth muscle cell-specific genes in association with phenotypic modulation.
    Sobue K; Hayashi K; Nishida W
    Mol Cell Biochem; 1999 Jan; 190(1-2):105-18. PubMed ID: 10098977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity.
    Owens GK
    Novartis Found Symp; 2007; 283():174-91; discussion 191-3, 238-41. PubMed ID: 18300422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.