These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16614363)

  • 1. Does blood flow restriction enhance hypertrophic signaling in skeletal muscle?
    Meyer RA
    J Appl Physiol (1985); 2006 May; 100(5):1443-4. PubMed ID: 16614363
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy.
    Adams GR; Bamman MM
    Compr Physiol; 2012 Oct; 2(4):2829-70. PubMed ID: 23720267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β2 Adrenoceptor signaling-induced muscle hypertrophy from blood flow restriction: is there evidence?
    Loenneke JP; Wilson JM; Thiebaud RS; Abe T; Lowery RP; Bemben MG
    Horm Metab Res; 2012 Jun; 44(7):489-93. PubMed ID: 22638833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training.
    Abe T; Kearns CF; Sato Y
    J Appl Physiol (1985); 2006 May; 100(5):1460-6. PubMed ID: 16339340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review.
    Abe T; Loenneke JP; Fahs CA; Rossow LM; Thiebaud RS; Bemben MG
    Clin Physiol Funct Imaging; 2012 Jul; 32(4):247-52. PubMed ID: 22681600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential safety issues with blood flow restriction training.
    Loenneke JP; Wilson JM; Wilson GJ; Pujol TJ; Bemben MG
    Scand J Med Sci Sports; 2011 Aug; 21(4):510-8. PubMed ID: 21410544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of low-intensity blood flow-restricted training-induced muscular hypertrophy in eumenorrheic women in the follicular phase and luteal phase and age-matched men.
    Sakamaki M; Yasuda T; Abe T
    Clin Physiol Funct Imaging; 2012 May; 32(3):185-91. PubMed ID: 22487152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction.
    Suga T; Okita K; Morita N; Yokota T; Hirabayashi K; Horiuchi M; Takada S; Takahashi T; Omokawa M; Kinugawa S; Tsutsui H
    J Appl Physiol (1985); 2009 Apr; 106(4):1119-24. PubMed ID: 19213931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanistic approach to blood flow occlusion.
    Loenneke JP; Wilson GJ; Wilson JM
    Int J Sports Med; 2010 Jan; 31(1):1-4. PubMed ID: 19885776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Point: The muscle pump raises muscle blood flow during locomotion.
    Sheriff D
    J Appl Physiol (1985); 2005 Jul; 99(1):371-2; discussion 374-5. PubMed ID: 16036908
    [No Abstract]   [Full Text] [Related]  

  • 11. The muscle pump is/is not an important determinant of muscle blood flow during exercise.
    Wray DW; Richardson RS
    J Appl Physiol (1985); 2005 Aug; 99(2):772. PubMed ID: 16020442
    [No Abstract]   [Full Text] [Related]  

  • 12. The muscle pump is not an important determinant of muscle blood flow during exercise.
    Panchev VS; Suvandjieva AV; Pancheva MV
    J Appl Physiol (1985); 2005 Aug; 99(2):778. PubMed ID: 16020448
    [No Abstract]   [Full Text] [Related]  

  • 13. The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling.
    Loenneke JP; Fahs CA; Rossow LM; Abe T; Bemben MG
    Med Hypotheses; 2012 Jan; 78(1):151-4. PubMed ID: 22051111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Counterpoint: The muscle pump is not an important determinant of muscle blood flow during exercise.
    Clifford PS; Hamann JJ; Valic Z; Buckwalter JB
    J Appl Physiol (1985); 2005 Jul; 99(1):372-4; discussion 374-5. PubMed ID: 16050005
    [No Abstract]   [Full Text] [Related]  

  • 15. Leukemia inhibitory factor restores the hypertrophic response to increased loading in the LIF(-/-) mouse.
    Spangenburg EE; Booth FW
    Cytokine; 2006 May; 34(3-4):125-30. PubMed ID: 16781162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: II. Muscle energy use as indicated by blood flow.
    Ellerby DJ; Marsh RL
    J Exp Biol; 2006 Jun; 209(Pt 11):2064-75. PubMed ID: 16709909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comment on Point:Counterpoint "The muscle pump is/is not an important determinant of muscle blood flow during exercise".
    Vanteeffelen JW; Segal SS
    J Appl Physiol (1985); 2005 Dec; 99(6):2451. PubMed ID: 16288103
    [No Abstract]   [Full Text] [Related]  

  • 18. Mechanical compression elicits vasodilatation in rat skeletal muscle feed arteries.
    Clifford PS; Kluess HA; Hamann JJ; Buckwalter JB; Jasperse JL
    J Physiol; 2006 Apr; 572(Pt 2):561-7. PubMed ID: 16497720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between limb and trunk muscle hypertrophy following high-intensity resistance training and blood flow-restricted low-intensity resistance training.
    Yasuda T; Ogasawara R; Sakamaki M; Bemben MG; Abe T
    Clin Physiol Funct Imaging; 2011 Sep; 31(5):347-51. PubMed ID: 21771252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural control of muscle blood flow during exercise.
    Thomas GD; Segal SS
    J Appl Physiol (1985); 2004 Aug; 97(2):731-8. PubMed ID: 15247201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.