These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 16614934)

  • 1. A simple and green procedure for the microbial effective synthesis of 1-phenylethyl alcohol in both enantiomeric forms.
    Brzezińska-Rodak M; Zymańczyk-Duda E; Klimek-Ochab M; Kafarski P; Lejczak B
    Biotechnol Lett; 2006 Apr; 28(7):511-3. PubMed ID: 16614934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Enantioselective Production of Chiral Secondary Alcohols with Candida zeylanoides as a New Whole Cell Biocatalyst.
    Şahin E; Dertli E
    Chem Biodivers; 2017 Sep; 14(9):. PubMed ID: 28746771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A predictive thermodynamic model for the bioreduction of acetophenone to phenethyl alcohol using resting cells of Saccharomyces cerevisiae.
    Zhao Y; DeLancey GB
    Biotechnol Bioeng; 1999 Aug; 64(4):442-51. PubMed ID: 10397883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly enantiomeric reduction of acetophenone and its derivatives by locally isolated Rhodotorula glutinis.
    Zilbeyaz K; Kurbanoglu EB
    Chirality; 2010 Oct; 22(9):849-54. PubMed ID: 20803750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective reduction of acetophenone and its derivatives with a new yeast isolate Candida tropicalis PBR-2 MTCC 5158.
    Soni P; Banerjee UC
    Biotechnol J; 2006 Jan; 1(1):80-5. PubMed ID: 16892228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Preparation of chiral alcohol by stereoselective reduction of acetophenone and chloroacetophenone with yeast cells].
    Ou Z; Wu J; Yang L; Cen P
    Wei Sheng Wu Xue Bao; 2003 Aug; 43(4):523-6. PubMed ID: 16276931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased availability of NADH in metabolically engineered baker's yeast improves transaminase-oxidoreductase coupled asymmetric whole-cell bioconversion.
    Knudsen JD; Hägglöf C; Weber N; Carlquist M
    Microb Cell Fact; 2016 Feb; 15():37. PubMed ID: 26879378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective transesterification using lipase-displaying yeast whole-cell biocatalyst.
    Matsumoto T; Ito M; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2004 May; 64(4):481-5. PubMed ID: 14689244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green asymmetric reduction of acetophenone derivatives: Saccharomyces cerevisiae and aqueous natural deep eutectic solvent.
    Panić M; Delač D; Roje M; Radojčić Redovniković I; Cvjetko Bubalo M
    Biotechnol Lett; 2019 Feb; 41(2):253-262. PubMed ID: 30511240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of (R)-1-phenylethanols through bioreduction of acetophenones by a new fungus isolate Trichothecium roseum.
    Zilbeyaz K; Taskin M; Kurbanoglu EB; Kurbanoglu NI; Kilic H
    Chirality; 2010 Jun; 22(6):543-7. PubMed ID: 19743484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of 2-aminoacetophenone reductase of newly isolated Burkholderia sp. YT.
    Yamada-Onodera K; Takase Y; Tani Y
    J Biosci Bioeng; 2007 Nov; 104(5):416-9. PubMed ID: 18086443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoselective reduction of ketones by Daucus carota hairy root cultures.
    Caron D; Coughlan AP; Simard M; Bernier J; Piché Y; Chênevert R
    Biotechnol Lett; 2005 May; 27(10):713-6. PubMed ID: 16049739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmembrane distribution of substrate and product during the bioreduction of acetophenone with resting cells of Saccharomyces cerevisiae.
    Zhao Y; DeLancey GB
    Biotechnol Bioeng; 1999 Aug; 64(4):434-41. PubMed ID: 10397882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-line monitoring of bioreductions via membrane introduction mass spectrometry.
    Milagre CD; Milagre HM; Rodrigues JA; Rocha LL; Santos LS; Eberlin MN
    Biotechnol Bioeng; 2005 Jun; 90(7):888-92. PubMed ID: 15834949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioreduction of some common carbonylic compounds mediated by yeasts.
    Silva J; Alarcón J; Aguila SA; Alderete JB
    Z Naturforsch C J Biosci; 2010; 65(1-2):1-9. PubMed ID: 20355313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotransformation of a crizotinib intermediate using a mutant alcohol dehydrogenase of
    Zong C; Zhang X; Yang F; Zhou Y; Chen N; Yang Z; Ding G; Yu F; Tang Y
    Prep Biochem Biotechnol; 2019; 49(6):578-583. PubMed ID: 30957714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereoselective oxidation of racemic 1-arylethanols by basil cultured cells of Ocimum basilicum cv. Purpurascens.
    Itoh K; Nakamura K; Utsukihara T; Sakamaki H; Horiuchi CA
    Biotechnol Lett; 2008 May; 30(5):951-4. PubMed ID: 18060603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing the levels of 2-phenylethyl acetate in wine through the use of a mixed culture of Hanseniaspora osmophila and Saccharomyces cerevisiae.
    Viana F; Gil JV; Vallés S; Manzanares P
    Int J Food Microbiol; 2009 Sep; 135(1):68-74. PubMed ID: 19683823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel technique that enables efficient conduct of simultaneous isomerization and fermentation (SIF) of xylose.
    Rao K; Chelikani S; Relue P; Varanasi S
    Appl Biochem Biotechnol; 2008 Mar; 146(1-3):101-17. PubMed ID: 18421591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioselective biotransformation of pentoxifylline into lisofylline using wine yeast biocatalysis.
    Pekala E; Wójcik T
    Acta Pol Pharm; 2007; 64(2):109-13. PubMed ID: 17665859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.