BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 16615304)

  • 1. Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of southern China: field surveys.
    Wang HB; Ye ZH; Shu WS; Li WC; Wong MH; Lan CY
    Int J Phytoremediation; 2006; 8(1):1-11. PubMed ID: 16615304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake and accumulation of arsenic by 11 Pteris taxa from southern China.
    Wang HB; Wong MH; Lan CY; Baker AJ; Qin YR; Shu WS; Chen GZ; Ye ZH
    Environ Pollut; 2007 Jan; 145(1):225-33. PubMed ID: 16777301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation.
    Caille N; Swanwick S; Zhao FJ; McGrath SP
    Environ Pollut; 2004 Nov; 132(1):113-20. PubMed ID: 15276279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study.
    Kertulis-Tartar GM; Ma LQ; Tu C; Chirenje T
    Int J Phytoremediation; 2006; 8(4):311-22. PubMed ID: 17305305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.
    Wei CY; Chen TB
    Chemosphere; 2006 May; 63(6):1048-53. PubMed ID: 16297966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution.
    Gonzaga MI; Santos JA; Ma LQ
    Environ Pollut; 2008 Jul; 154(2):212-8. PubMed ID: 18037547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of arsenate reductase and superoxide dismutase in As accumulation in four Pteris species.
    Liu Y; Wang HB; Wong MH; Ye ZH
    Environ Int; 2009 Apr; 35(3):491-5. PubMed ID: 18793802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of arsenic accumulation in 18 fern species and four Pteris vittata accessions.
    Srivastava M; Santos J; Srivastava P; Ma LQ
    Bioresour Technol; 2010 Apr; 101(8):2691-9. PubMed ID: 20044253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three new arsenic hyperaccumulating ferns.
    Srivastava M; Ma LQ; Santos JA
    Sci Total Environ; 2006 Jul; 364(1-3):24-31. PubMed ID: 16371231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The extent of arsenic and of metal uptake by aboveground tissues of Pteris vittata and Cyperus involucratus growing in copper- and cobalt-rich tailings of the Zambian copperbelt.
    Kříbek B; Mihaljevič M; Sracek O; Knésl I; Ettler V; Nyambe I
    Arch Environ Contam Toxicol; 2011 Aug; 61(2):228-42. PubMed ID: 20949352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing arsenic accumulation by Pteris vittata: a comparative field study at two sites.
    Wei CY; Sun X; Wang C; Wang WY
    Environ Pollut; 2006 Jun; 141(3):488-93. PubMed ID: 16236410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoextraction: simulating uptake and translocation of arsenic in a soil-plant system.
    Ouyang Y
    Int J Phytoremediation; 2005; 7(1):3-17. PubMed ID: 15943240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L.
    Tu C; Ma LQ
    Environ Pollut; 2005 May; 135(2):333-40. PubMed ID: 15734593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variation in arsenic, lead and zinc tolerance and accumulation in six populations of Pteris vittata L. from China.
    Wu FY; Leung HM; Wu SC; Ye ZH; Wong MH
    Environ Pollut; 2009; 157(8-9):2394-404. PubMed ID: 19371990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pteris umbrosa R. Br. as an arsenic hyperaccumulator: accumulation, partitioning and comparison with the established As hyperaccumulator Pteris vittata.
    Koller CE; Patrick JW; Rose RJ; Offler CE; MacFarlane GR
    Chemosphere; 2007 Jan; 66(7):1256-63. PubMed ID: 16934852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake.
    Tu C; Ma LQ
    J Environ Qual; 2002; 31(2):641-7. PubMed ID: 11931457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata.
    Fayiga AO; Ma LQ
    Sci Total Environ; 2006 Apr; 359(1-3):17-25. PubMed ID: 15985282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of arsenic tolerance, uptake and accumulation between arsenic hyperaccumulator, Pteris vittata L. and non-accumulator, P. semipinnata L.--a hydroponic study.
    Lou LQ; Ye ZH; Wong MH
    J Hazard Mater; 2009 Nov; 171(1-3):436-42. PubMed ID: 19577839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc tolerance and accumulation in the ferns Polypodium cambricum L. and Pteris vittata L.
    Roccotiello E; Manfredi A; Drava G; Minganti V; Giorgio Mariotti M; Berta G; Cornara L
    Ecotoxicol Environ Saf; 2010 Sep; 73(6):1264-71. PubMed ID: 20678794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic accumulation by ferns: a field survey in southern China.
    Wei CY; Wang C; Sun X; Wang WY
    Environ Geochem Health; 2007 Jun; 29(3):169-77. PubMed ID: 17256100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.