These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
422 related articles for article (PubMed ID: 16615759)
1. On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes. Sun X; Gillis KD Anal Chem; 2006 Apr; 78(8):2521-5. PubMed ID: 16615759 [TBL] [Abstract][Full Text] [Related]
2. A microfluidic cell trap device for automated measurement of quantal catecholamine release from cells. Gao Y; Bhattacharya S; Chen X; Barizuddin S; Gangopadhyay S; Gillis KD Lab Chip; 2009 Dec; 9(23):3442-6. PubMed ID: 19904414 [TBL] [Abstract][Full Text] [Related]
3. Magnetron sputtered diamond-like carbon microelectrodes for on-chip measurement of quantal catecholamine release from cells. Gao Y; Chen X; Gupta S; Gillis KD; Gangopadhyay S Biomed Microdevices; 2008 Oct; 10(5):623-9. PubMed ID: 18493856 [TBL] [Abstract][Full Text] [Related]
4. Controlled on-chip stimulation of quantal catecholamine release from chromaffin cells using photolysis of caged Ca2+ on transparent indium-tin-oxide microchip electrodes. Chen X; Gao Y; Hossain M; Gangopadhyay S; Gillis KD Lab Chip; 2008 Jan; 8(1):161-9. PubMed ID: 18094774 [TBL] [Abstract][Full Text] [Related]
5. Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells. Spégel C; Heiskanen A; Pedersen S; Emnéus J; Ruzgas T; Taboryski R Lab Chip; 2008 Feb; 8(2):323-9. PubMed ID: 18231673 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of two-layer poly(dimethyl siloxane) devices for hydrodynamic cell trapping and exocytosis measurement with integrated indium tin oxide microelectrodes arrays. Gao C; Sun X; Gillis KD Biomed Microdevices; 2013 Jun; 15(3):445-51. PubMed ID: 23329291 [TBL] [Abstract][Full Text] [Related]
7. Dielectrophoretic capture of mammalian cells using transparent indium tin oxide electrodes in microfluidic systems. Sankaran B; Racic M; Tona A; Rao MV; Gaitan M; Forry SP Electrophoresis; 2008 Dec; 29(24):5047-54. PubMed ID: 19130589 [TBL] [Abstract][Full Text] [Related]
8. A new way for the analysis of the exocytosis. Sánchez JL; Brioso MA; Segura F; Borges R Stud Health Technol Inform; 1999; 68():400-5. PubMed ID: 10724915 [TBL] [Abstract][Full Text] [Related]
10. Invariance of exocytotic events detected by amperometry as a function of the carbon fiber microelectrode diameter. Amatore C; Arbault S; Bouret Y; Guille M; Lemaître F; Verchier Y Anal Chem; 2009 Apr; 81(8):3087-93. PubMed ID: 19290664 [TBL] [Abstract][Full Text] [Related]
11. Fabrication and evaluation of a carbon-based dual-electrode detector for poly(dimethylsiloxane) electrophoresis chips. Gawron AJ; Martin RS; Lunte SM Electrophoresis; 2001 Jan; 22(2):242-8. PubMed ID: 11288891 [TBL] [Abstract][Full Text] [Related]
13. Electrochemiluminescence analysis of folate receptors on cell membrane with on-chip bipolar electrode. Wu MS; Xu BY; Shi HW; Xu JJ; Chen HY Lab Chip; 2011 Aug; 11(16):2720-4. PubMed ID: 21731961 [TBL] [Abstract][Full Text] [Related]
14. Microfabricated in-channel structured polydimethylsiloxane microfluidic system for a lab-on-a-chip. Ra GS; Yoo JC; Kang CJ; Kim YS J Nanosci Nanotechnol; 2008 Sep; 8(9):4588-92. PubMed ID: 19049064 [TBL] [Abstract][Full Text] [Related]
15. A microfluidic platform for chemical stimulation and real time analysis of catecholamine secretion from neuroendocrine cells. Ges IA; Brindley RL; Currie KP; Baudenbacher FJ Lab Chip; 2013 Dec; 13(23):4663-73. PubMed ID: 24126415 [TBL] [Abstract][Full Text] [Related]
17. Single-vesicle catecholamine release has greater quantal content and faster kinetics in chromaffin cells from hypertensive, as compared with normotensive, rats. Miranda-Ferreira R; de Pascual R; de Diego AM; Caricati-Neto A; Gandía L; Jurkiewicz A; García AG J Pharmacol Exp Ther; 2008 Feb; 324(2):685-93. PubMed ID: 17962518 [TBL] [Abstract][Full Text] [Related]
18. Monitoring of dopamine release in single cell using ultrasensitive ITO microsensors modified with carbon nanotubes. Shi BX; Wang Y; Zhang K; Lam TL; Chan HL Biosens Bioelectron; 2011 Feb; 26(6):2917-21. PubMed ID: 21185713 [TBL] [Abstract][Full Text] [Related]
19. Transparent Electrode Materials for Simultaneous Amperometric Detection of Exocytosis and Fluorescence Microscopy. Kisler K; Kim BN; Liu X; Berberian K; Fang Q; Mathai CJ; Gangopadhyay S; Gillis KD; Lindau M J Biomater Nanobiotechnol; 2012; 3(2A):243-253. PubMed ID: 22708072 [TBL] [Abstract][Full Text] [Related]
20. Improved surface-patterned platinum microelectrodes for the study of exocytotic events. Berberian K; Kisler K; Fang Q; Lindau M Anal Chem; 2009 Nov; 81(21):8734-40. PubMed ID: 19780579 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]