BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 16615759)

  • 21. Electrochemical optical waveguide lightmode spectroscopy (EC-OWLS): a pilot study using evanescent-field optical sensing under voltage control to monitor polycationic polymer adsorption onto indium tin oxide (ITO)-coated waveguide chips.
    Bearinger JP; Vörös J; Hubbell JA; Textor M
    Biotechnol Bioeng; 2003 May; 82(4):465-73. PubMed ID: 12632403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of apex and bottom secretion efficiency at chromaffin cells as measured by amperometry.
    Amatore C; Arbault S; Lemaître F; Verchier Y
    Biophys Chem; 2007 May; 127(3):165-71. PubMed ID: 17316959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative investigations of amperometric spike feet suggest different controlling factors of the fusion pore in exocytosis at chromaffin cells.
    Amatore C; Arbault S; Bonifas I; Guille M
    Biophys Chem; 2009 Aug; 143(3):124-31. PubMed ID: 19501951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deoxyribonucleic acid modified poly(dimethylsiloxane) microfluidic channels for the enhancement of microchip electrophoresis.
    Liang R; Hu P; Gan G; Qiu J
    Talanta; 2009 Mar; 77(5):1647-53. PubMed ID: 19159778
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical detection of cardiac troponin I using a microchip with the surface-functionalized poly(dimethylsiloxane) channel.
    Ko S; Kim B; Jo SS; Oh SY; Park JK
    Biosens Bioelectron; 2007 Aug; 23(1):51-9. PubMed ID: 17462876
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microwell device for targeting single cells to electrochemical microelectrodes for high-throughput amperometric detection of quantal exocytosis.
    Liu X; Barizuddin S; Shin W; Mathai CJ; Gangopadhyay S; Gillis KD
    Anal Chem; 2011 Apr; 83(7):2445-51. PubMed ID: 21355543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patterning cells on optically transparent indium tin oxide electrodes.
    Shah S; Revzin A
    J Vis Exp; 2007; (7):259. PubMed ID: 18989431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transport, location, and quantal release monitoring of single cells on a microfluidic device.
    Huang WH; Cheng W; Zhang Z; Pang DW; Wang ZL; Cheng JK; Cui DF
    Anal Chem; 2004 Jan; 76(2):483-8. PubMed ID: 14719902
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mini-electrochemical detector for microchip electrophoresis.
    Jiang L; Lu Y; Dai Z; Xie M; Lin B
    Lab Chip; 2005 Sep; 5(9):930-4. PubMed ID: 16100576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical measurement of quantal exocytosis using microchips.
    Gillis KD; Liu XA; Marcantoni A; Carabelli V
    Pflugers Arch; 2018 Jan; 470(1):97-112. PubMed ID: 28866728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip.
    Kim SM; Burns MA; Hasselbrink EF
    Anal Chem; 2006 Jul; 78(14):4779-85. PubMed ID: 16841895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual contactless conductivity and amperometric detection on hybrid PDMS/glass electrophoresis microchips.
    Vázquez M; Frankenfeld C; Coltro WK; Carrilho E; Diamond D; Lunte SM
    Analyst; 2010 Jan; 135(1):96-103. PubMed ID: 20024187
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbioassay system for antiallergic drug screening using suspension cells retaining in a poly(dimethylsiloxane) microfluidic device.
    Tokuyama T; Fujii S; Sato K; Abo M; Okubo A
    Anal Chem; 2005 May; 77(10):3309-14. PubMed ID: 15889923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Separation of proteins on surface-modified poly(dimethylsiloxane) microfluidic devices.
    Dou YH; Bao N; Xu JJ; Meng F; Chen HY
    Electrophoresis; 2004 Sep; 25(17):3024-31. PubMed ID: 15349944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemical detection of catecholamine release using planar iridium oxide electrodes in nanoliter microfluidic cell culture volumes.
    Ges IA; Currie KP; Baudenbacher F
    Biosens Bioelectron; 2012 Apr; 34(1):30-6. PubMed ID: 22398270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Palladium nanoparticles modified electrode for the selective detection of catecholamine neurotransmitters in presence of ascorbic acid.
    Thiagarajan S; Yang RF; Chen SM
    Bioelectrochemistry; 2009 Jun; 75(2):163-9. PubMed ID: 19409863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of local pH variations during amperometric monitoring of vesicular exocytotic events at chromaffin cells.
    Amatore C; Arbault S; Bouret Y; Guille M; Lemaître F
    Chemphyschem; 2010 Sep; 11(13):2931-41. PubMed ID: 20391459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application.
    Ma Y; Di J; Yan X; Zhao M; Lu Z; Tu Y
    Biosens Bioelectron; 2009 Jan; 24(5):1480-3. PubMed ID: 19038539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Amperometric detection of quantal catecholamine secretion from individual cells on micromachined silicon chips.
    Chen P; Xu B; Tokranova N; Feng X; Castracane J; Gillis KD
    Anal Chem; 2003 Feb; 75(3):518-24. PubMed ID: 12585478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence monitoring of ATP-stimulated, endothelium-derived nitric oxide production in channels of a poly(dimethylsiloxane)-based microfluidic device.
    D'Amico Oblak T; Root P; Spence DM
    Anal Chem; 2006 May; 78(9):3193-7. PubMed ID: 16643013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.